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Abstract

In March 2020, Luxembourg became the first country to make public transport free.

We use this unique setting to evaluate the policy’s impact on carbon emissions. Syn-

thetic difference-in-differences allows us to identify a suitable control group. We use

spatial emission data to construct a panel of NUTS 2 control regions in the EU from

2016 to 2021. Our estimates indicate an average reduction of 6.1% in road transport

emissions. We account for potential confounders, such as the COVID-19 pandemic, shifts

in commuting behaviors and advancements in vehicle technologies. Robustness checks

support the credibility of our results.
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1 Introduction

The provision of affordable and efficient public transport is often discussed as an effec-

tive way of reducing carbon (CO2) emissions from the transport sector (Federal Transit

Administration, 2010; International Transport Forum, 2020). Accessible, affordable, and

efficient public transit can encourage a shift from private motorized transport to more en-

vironmentally friendly modes. However, despite these benefits, fully free public transport

policies are scarce. In March 2020, Luxembourg became the first country in the world to

abolish fares on all modes of public transit, including buses, trains, and trams, through-

out the country to mitigate transport-related externalities (Research Luxembourg, 2021).

Our paper exploits this quasi-experimental setting to empirically quantify its impact on

CO2 emissions in Luxembourg’s road transport sector. To evaluate the effect of this

policy, we use the recently introduced synthetic difference-in-differences method to con-

struct a meaningful counterfactual for Luxembourg and compare the post-intervention

outcomes against it (Arkhangelsky et al., 2021).

In our specific setting, we encounter two main identification challenges. First, Lux-

embourg stands out from other European Union (EU) countries in many ways. It has

the highest Gross Domestic Product (GDP) per capita, the highest motorization rate,

and the highest per capita CO2 emissions from transport. These unique characteristics

make it challenging to find comparable regions to construct a counterfactual scenario for

Luxembourg. To address this, we conduct our analysis at the Nomenclature for Terri-

torial Units for Statistics (NUTS) 2 level, as Luxembourg itself constitutes a NUTS 2

region.1 This level of analysis provides a more appropriate basis for comparison in terms

of emission trajectories than entire countries.

The uniqueness of Luxembourg’s case also makes it less plausible that the parallel

trends assumption required for a difference-in-differences (DID) estimation will hold.

Synthetic control (SC) approaches may find a better counterfactual by attaching weights

to units that are more similar to Luxembourg than others. However, SC methods require

a donor pool of units similar in predictors of the outcome to the treated unit, and weights

are assigned to donor units such that the synthetic counterfactual exactly emulates the

trajectory of the treated unit’s outcome in the pre-period. Given the uniqueness of

Luxembourg among EU regions, this requirement is unlikely to be met in our setting.

We therefore use the recently proposed synthetic difference-in-differences (SDID) method

and construct a counterfactual CO2 emission trajectory for Luxembourg from a pool of

donor regions without relying on matches in absolute levels at any stage of the procedure.

The second challenge to identification is linked to variations in mobility patterns that

are caused by factors other than the free public transportation policy. The COVID-19

1NUTS is an EU classification system that divides countries into three levels. These classifications are
used for collecting, developing, and harmonizing European regional statistics, conducting socio-economic
analyses, and framing EU regional policies.
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pandemic, which coincided with the implementation of the free transport policy, is likely

causing such variations. This complicates identification if mobility behavior changed very

differently in Luxembourg compared to the control regions. Luxembourg experiences a

large inflow of commuters relative to their workforce. Cross-border commuters work in

Luxembourg but reside in France, Belgium, or Germany. To study changes in this behav-

ior, we draw on data on working from home and commuting inflow for Luxembourg. Our

analysis indicates that Luxembourg’s mobility patterns in response to the pandemic were

largely consistent with those observed in other EU regions. Additionally, we account for

these patterns in our models to enhance the accuracy of our identification strategy. Ad-

ditionally, countries and regions might have reacted differently to the pandemic, resulting

in large variations in the spread of the virus, which might impact mobility behavior in

our sample period. To control for such variations, we study and control for daily regional

COVID-19 cases in our estimations.

Our potential donor pool for constructing Luxembourg’s counterfactual comprises all

other European regions at the NUTS 2 level over the period 2016-2021. From this pool, we

exclude regions that have implemented any form of public transportation subsidy during

the study period (this is elaborated in Section 4). After ensuring a balanced sample, our

final donor pool includes 136 NUTS 2 regions and 816 region-time observations. Using

this dataset, we estimate that the free public transport policy in Luxembourg led to an

average treatment effect on the treated (ATT) of around 6.1%, i.e., to a reduction in

CO2 emissions from the road transport sector by 6.1%. Our results are significant at the

95% confidence level. We conduct an event study analysis to verify that parallel trends

hold in the pre-treatment period. We conduct various robustness and sensitivity tests,

including a placebo test by backdating the policy to 2019, a specification that accounts

for fuel tourism effects, and analyzing a more restricted sample of NUTS 2 regions. We

also examine the sensitivity of our results to different model specifications and test the

robustness of our estimates against fuel-tourism effects. Our findings remained consistent

across all these tests.

We contribute to the literature by providing the first causal assessment of a free public

transport policy on CO2 emissions. Methodologically, we employ novel approaches to

address the unique challenges presented by Luxembourg’s distinct characteristics and

the concurrent COVID-19 pandemic. Additionally, this study offers a framework for

addressing COVID-19 as a potential confounder in similar research contexts. To the best

of our knowledge, there is only one other study that directly looks at Luxembourg’s free

public transportation policy. Bigi et al. (2023) use an agent-based modeling approach and

indicate that the policy significantly contributed to a modal shift from private vehicles to

public transport. Our findings contribute to this narrative by providing a causal ex-post

evaluation of the policy’s impact on CO2 emissions.

The existing literature on the effects of free public transport on CO2 emissions is
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still scarce. Tallinn (Estonia) introduced free public transit in 2013 and extended it

since. Descriptive work by Cats et al. (2017) found that this policy is associated with an

increase in public transport usage, but had no significant effect on car usage. Bull et al.

(2021) randomly assigned free public transport vouchers to workers in Santiago (Chile),

which were primarily used during off-peak hours. This suggests that the vouchers were

more often utilized for leisure activities rather than reducing car usage. Tomeš et al.

(2022) study two massive long-distance fare discount schemes for children, students, and

pensioners in Slovakia and the Czech Republic. The former introduced free railway fares

for these groups from 2014 on, while the latter introduced a 75% discount for trains and

busses from 2018 on. They found a significant increase in public transport usage for these

groups, but do not evaluate the impact on CO2 emissions.

Our paper links to a larger body of literature that ex-post evaluates transport policies

designed to decrease reliance on motorized vehicles. Policies aimed at mitigating trans-

port emissions can be categorized into three main types. The first one examines policies

intended to directly reduce or restrict the use of motor vehicles by making driving more

costly or less convenient. These include initiatives such as low-emission zones (Sarmiento

et al., 2023; Wolff, 2014), driving restrictions (Davis, 2008, 2017; Gallego et al., 2013),

and tax-based instruments (Andersson, 2019; Pretis, 2022). The second type includes

policies encouraging a shift towards more sustainable modes of transport, in particular

by subsidizing public transport systems (Aydin & Kürschner Rauck, 2023; Borsati et

al., 2023; Gohl & Schrauth, 2024) or improving public transit infrastructure (Chen &

Whalley, 2012; Gendron-Carrier et al., 2022; Lalive et al., 2018; Li et al., 2019). Policies

related to the third type aim to improve the energy and fuel efficiency of vehicles through

regulations such as gasoline content standards (Auffhammer & Kellogg, 2011). While

most studies focus on individual policies, some jointly examine multiple interventions

(Koch et al., 2022; Kuss & Nicholas, 2022; Winkler et al., 2023).

Literature on public transport provision and improvements is particularly relevant

to our study. However, this body of research primarily emphasizes the effects on air

quality, with limited attention to other climate impacts. Li et al. (2019), for example,

assess the effect of subway expansion on air quality in China, while Lalive et al. (2018)

investigate the impact of increased regional rail services in Germany. Additionally, Chen

and Whalley (2012) explore the consequences of introducing a new rail transit system in

Taipei. These studies conclude that such policies lead to an improvement in air quality,

effectively reducing air pollution. Gendron-Carrier et al. (2022) examine the effect of

opening subway systems on air pollution in 58 cities. Despite observing no average effect,

they identify a decrease in air pollution, specifically in cities that initially had higher

levels of pollution.

Studies on the effects of fare reductions include, for instance, Aydin and Kürschner

Rauck (2023) and Gohl and Schrauth (2024), who examine the impact of the 9-Euro
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ticket introduced in Germany in 2022 on air quality. Both studies observe a decline in air

pollution following the introduction of the 9-euro ticket, with more significant reductions

noted in regions well-served by public transit systems. In contrast, Borsati et al. (2023)

investigate the effects of a four-month public transport subsidy implemented in Spain in

2022 but find no significant evidence of air quality improvements.

The rest of the paper is organized as follows. Section 2 briefly introduces Luxem-

bourg’s free public transport policy. The Data used is detailed in Section 3. The iden-

tification strategy is discussed in Section 4. The empirical strategy, including the SDID

procedure, is detailed in Section 5. Section 6 provides our empirical results and robust-

ness tests. The results and potential mechanisms are discussed in Section 7. Finally,

Section 8 provides concluding remarks.

2 Background: Luxembourg and the policy

Luxembourg is a small country in Western Europe and spans an area of about 2,586 km2,

making it one of the smallest countries in the EU. In the NUTS statistical classification,

Luxembourg is treated as a single region at all levels. The country hosts several EU

institutions, with its economy primarily driven by banking and finance. Despite its small

size and population, Luxembourg has the highest GDP per capita among EU countries,

at approximately 140,000 USD. The economic hub is concentrated in Luxembourg City,

the capital, located in the south. The country experiences a significant daily inflow of

commuters from neighboring Belgium, Germany, and France, with around 200,000 people

commuting daily, representing a substantial portion of its population of approximately

660,000. Luxembourg has the highest per capita CO2 emissions from transport among

EU member states, at around 8,200 kg. It also has the highest car density in the EU,

with about 700 cars per 1,000 inhabitants. These characteristics set the country quite

far apart from other EU countries.

On March 1, 2020, Luxembourg became the first country in the world to offer free

public transport nationwide, available to all residents and visitors regardless of age and

income group. Tickets are only required for 1st class travel. This initiative was part of

the broader mobility strategy, “Modu.2.0” that aimed at improving the sustainability of

the mobility system (Ministère du Développement Durable et des Infrastructures, 2018).

Luxembourg designed this policy with the aim of reducing car usage to counter its high

car density and significant congestion problems. Before the implementation of this policy,

annual revenue for ticket sales in Luxembourg amounted to about 41 million euros, which

accounted for approximately 8% of the annual cost of transport system maintenance

(Ministère du Développement Durable et des Infrastructures, 2018).

The existing public transportation infrastructure forms the backbone of the policy

initiative and comprises buses, trams, and trains. The public transit network is sketched
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in Figure 1, where bus lines are shown in grey, train lines in pink, and the tram line in red.

Buses are the predominant mode of public transportation in Luxembourg and offer quite

a comprehensive coverage across the entire country. They connect different localities as

well as cross-border lines (Ministère du Développement Durable et des Infrastructures,

2020). Altogether about 400 bus lines are running through Luxembourg, connecting the

entire country (Administration des transports publics, 2024). Trains additionally cover

the country in a star-like network, originating in Luxembourg City and connecting it to

cross-border connections (Département de la mobilité et des transports, 2020).

Figure 1: Luxembourg public transport network and traffic camera posts

Note: On the upper righthand side of the figure is a map of Europe with Luxembourg highlighted in

red. At the center of the figure is a map of Luxembourg. The light blue side shows the border shared

with Belgium, the green side shows the border shared with Germany and the dark blue side shows the

border shared with France. The black dots indicate the location of the traffic posts. The circled dots

indicate traffic posts that recorded a decrease in bi-directional car traffic volumes in 2021 relative to

2019. The dots circled in red show the top 10 traffic posts that recorded a decrease in bi-directional car

traffic volumes in 2021 relative to 2019. The light grey lines are the regional (RGTR) bus networks. The

dark purple lines are the National rail networks. The red line is the tram line. The light pink shaded

area is Luxembourg City. The public transport networks mapped are the networks as of 2018 (the latest

available data). The traffic posts data and the geospatital data for the public transport data are obtained

from Luxembourg’s open data portal (Gouvernement du Grand-Duché de Luxembourg, 2023, 2024).

The city of Luxembourg is additionally served by the only tram line in the coun-
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try, which covers around 10km through 17 stations (Département de la mobilité et des

transports, 2024). Before the implementation of the free public transportation policy,

Luxembourg charged differentiated public transport fares based on the duration and

length of travel. Special rates for children and the elderly were available, as outlined in

the Ministerial Regulation of July 14, 2017 - Règlement ministériel du 14 juillet 2017

fixant les tarifs des transports publics (Le Ministre du Développement durable et des In-

frastructures, 2017). Short-term tickets, valid for a maximum of 2 hours from validation

were priced at 2 euros. Long-term tickets, valid for 1, 2, and 3 days, ranged from 4 to 12

euros, while annual network subscriptions were priced at 440 euros.2

It is worth noting that the free public transit policy was complemented by enhance-

ments in the transportation infrastructure, notably through the strategic expansion of

the national rail network’s capacity and extensions in the tram line coverage. In 2017,

Luxembourg introduced a tram line traversing Luxembourg City, initially connecting 8

stations. The following year saw the line’s expansion by 3 more stops. December 2020

marked another extension, enlarging the network by 2 kilometers and incorporating 4

additional stations. By September 2022, the tram network further expanded with the

addition of 2 new stations. The latter two expansions took place after the free public

transportation policy was introduced. Because the extension in 2020 aligns exactly with

the free transit policy, we cannot disentangle the two effects and have to study their

impact jointly. The most recent extension lies outside our sample period and we do not

find evidence that suggests significant effects of the 2017 expansion. We will return to

the latter aspect in Section 6.1.

Currently, the tram stretches over 10 kilometers, serves 17 stations, and includes 6 ma-

jor interchanges (Département de la mobilité et des transports, 2024). Luxembourg plans

to further introduce 3 more tramlines by the end of 2035 (Luxtoday, 2022). Luxembourg

also prioratized improving parking availability, particularly near border areas because of

its substantial number of cross-border commuters. Additionally, through negotiations

with neighboring transport networks, fares for cross-border transport have been lowered

(Ministry of Mobility and Public Works, 2020). Consequently, the new scheme is de-

signed to benefit not only residents but also commuters from neighboring countries. The

strategic objective for 2025 is to reduce congestion during peak hours while transporting

20% more people than in 2017.

Figure 1 also illustrates traffic posts in Luxembourg measuring bi-directional car travel

volume. The traffic volume data is compiled by the Administration des Ponts et Chaussées

(Luxembourg Bridges and Roads Administration) and includes daily traffic counts. We

map the points for which we obtain an uninterrupted time series over the period 2018-

2021. The traffic posts circled all experienced a decrease in annual bi-directional car

2A detailed schedule of public transport fares is available at (Le Ministre du Développement durable
et des Infrastructures, 2017).
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traffic volume compared to 2019, and the ten red circles experienced the largest drop.

The circled traffic posts are largely situated in the vicinity of Luxembourg City and

mostly close to public transport networks. Overall, traffic volume increased annually

up to 2019 and basically stagnated after 2019, on average. We relate changes in traffic

volume to our results more thoroughly in Section 7.

3 Data

We combine the following data to estimate the causal effect of Luxembourg’s free public

transport policy on CO2 emissions from road transport. Data on the outcome variable,

per capita CO2 emissions from the road transport sector, are constructed by combining

spatial road transport CO2 emissions extracted from the European Emission Database

for Global Atmospheric Research (EDGAR) v8 (Crippa et al., 2022) with population data

from Eurostat’s (2024) regional statistics. To control for other factors that may influence

CO2 emissions from road transport, we include several covariates. Data on daily COVID-

19 cases at the NUTS 2 level, used to account for the impact of lockdown measures, are

sourced from Naqvi (2021). Data on working from home and commuting inflows, included

to capture changes in mobility patterns due to the pandemic are obtained from a special

extraction from the EU Labor Force Survey (EU-LFS).

Fuel prices are sourced from the European Commission’s (2024) weekly oil bulletin

and included to control for the effect of prices. The electrification and energy efficiency

of cars directly impact CO2 emissions from transport. To account for these effects, we

include a control for the emission intensity of new passenger cars, which accounts for low-

carbon engine technologies (EEA, 2024). This control captures the energy efficiencies of

pure electric, hybrid, and alternate energy source vehicles. Data on loaded goods included

to capture the effect of freight transport emissions are obtained from Eurostat’s (2024)

regional statistics. Finally, we use data on real GDP per capita from the regional statistics

to control for overall differences in economic development. After dropping missing data

to ensure a balanced panel, we are left with 136 regions over the sample period 2016-

2021, giving a total of 816 region-year observations. The following subsections discuss in

more detail the outcome variable, CO2 emissions from road transport, and the COVID-19

related controls used in our analysis.

3.1 CO2 emissions data

Road transport emissions are categorized under the Intergovenmental Panel for Climate

Change (IPCC) 1996 sector category 1.A.3.b. Emissions are calculated as the product

of fuel consumption times the associated IPCC emission factors. The EDGAR database

provides annual sector specific grid maps expressed in ton substance with a spatial res-
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olution of 0.1 degrees × 0.1 degrees. We aggregate these grid cells to the corresponding

NUTS 2 regions for the following 32 countries located in Europe: Austria, Belgium, Bul-

garia, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany,

Greece, Hungary, Iceland, Ireland, Italy, Latvia, Liechtenstein, Lithuania, Luxembourg,

Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Swe-

den, Switzerland, and United Kingdom. The NUTS 2 regional borders are extracted from

the Eurostat database (European Commission, 2022).

Figure 2: Evolution of CO2 emissions in Luxembourg over time and space

(a) Annual CO2 Emissions in Luxembourg
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(b) Average Emissions 2016-2019
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(c) % Change 2020-2021 vs. 2016-2019
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Note: (a) Shows the time-series of annual emissions, while (b) and (c) display spatial distributions
of emissions. (b) shows average emissions over the pre-treatment period, 2016-2019. (c) shows the
percentage change from average emissions over the post-treatment period (2020-2021) compared to
the pre-treatment period. Road transport CO2 emissions are extracted from the European Emission
Database for Global Atmospheric Research (EDGAR) v8. Grid cells are 0.1x0.1 degrees. Emissions are
expressed in ton substance.

We present the evolution of CO2 emissions from road transport for Luxembourg over

time in Figure 2.3 Panel (a) shows annual CO2 emissions from road transport over the

period 2016-2021. The impact of COVID-19 can be seen in a drop in emissions from 2019

to 2020. Emissions in 2021 stay consistently below pre-pandemic levels. Panel (b) shows

3Grid-cells that intersect with the NUTS 2 boundaries of Luxembourg are allocated according to their
fraction that falls inside these boundaries.
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the spatial distribution of average road transport emissions over the period 2016-2019,

which constitutes our pre-treatment period. High emissions are indicated in dark blue

and lower emissions in light blue. Emissions are concentrated around Luxembourg City

and border regions with France. Panel (c) shows the percentage change of average post-

treatment (2020-2021) emissions relative to average pre-treatment emissions. Emissions

on average stayed below the pre-policy average in the entire country. The largest differ-

ence can be observed around Luxembourg City, while differences on the Eastern border

of Luxembourg are less pronounced.

The reduction in CO2 emissions shown in Figure 2 is directly related to a reduction

in fuel consumption, indicating a shift in mobility patterns. This shift may be attributed

to various factors. Our primary interest is the causal effect of the free public transport

policy. To discern this causal effect, we need to account for potential variation caused by

other confounding effects. These potential sources of variation in CO2 emissions include

COVID-19 related restrictions and reduced mobility, as well as an increase in the number

people working from home and fewer commuting trips.

3.2 COVID-19 related variables

With the onset of the COVID-19 pandemic, many countries implemented lockdowns and

travel restrictions to curtail the spread of the virus (Hale et al., 2021). Luxembourg was

no exemption, with its government convening an extraordinary Government Council to

respond to the pandemic, on the 12th of March 2020. Subsequently, mobility restrictions

aimed at containing the spread of the virus came into effect on the 13th of March,

2020 (Government of the Grand Duchy of Luxembourg, 2020). The Our World in Data

(OWID) COVID-19 Government policy stringency index, a composite index based on

9 response measures, illustrates that many countries, including Luxembourg, adopted

similar measures during this period (Hale et al., 2021). These restrictions were often

enforced at regional or local levels, triggered by the number of cases reported in specific

areas. To capture the effect of the pandemic, we use data on confirmed COVID-19 cases

as a proxy for various policy responses and reduced mobility.

This data is collected and reported by the COVID-19 European Regional Tracker

at the NUTS 3 level (Naqvi, 2021). Information on the number of confirmed cases is

taken from each country’s official institutions responsible for providing COVID-19 related

data. The regional data is then aggregated up to the country level and cross-checked

against data from OWID, which provides confirmed COVID-19 cases at the country level

(Mathieu et al., 2020). The data matches well for 2020 and 2021. Data quality, however,

deteriorates in 2022, because the number of countries regularly reporting cases decreases

strongly in 2022. The COVID-19 European Regional Tracker reports cases for all regions

that we consider in our study, except for Luxembourg. However, since the regional data
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is validated against the OWID data and matches well for our sample period, we resort to

COVID-19 cases from OWID for Luxembourg. For our analysis, we aggregate the NUTS

3 level data in the COVID-19 European Regional Tracker to the NUTS 2 level.

Figure 3: Regional variation in COVID-19 cases for 2020 and 2021
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Note: The average daily confirmed COVID-19 cases and their spatial distribution across countries for
2020 and 2021. Data for Luxembourg is from Our Wold in Data (OWID), while data for NUTS 2
regions in other countries is taken from the COVID-19 European Regional Tracker (Naqvi, 2021).

Figure 3 shows the average regional variation in the number of confirmed daily

COVID-19 cases per 10,000 persons for 2020 and 2021. Dots represent the mean of

confirmed cases at the NUTS 0 level (i.e., country level), the downward-facing triangle

represents the NUTS 2 region with the lowest and the upward-facing triangle the region

with the highest number of confirmed cases per 10,000 persons within a country. The dis-

tance between these two points spans the spatial variation across NUTS 2 regions within

a country. It is evident that this spatial variation is significant, which further motivates

the choice to conduct our study at a regional level compared to the country level.

Overall, the number of cases per 10,000 persons as well as their spatial variation is

smaller in 2020 compared to 2021. Countries with a larger population also tend to show

a bigger variation in cases across their regions. Luxembourg does not show any regional

variation because its NUTS 0 and NUTS 2 regional boundaries are identical. Average

daily cases per 10,000 persons for Luxembourg in 2020 and 2021 are around 600 and

900, respectively. In 2020, this puts Luxembourg at the higher end of the spectrum of

regional cases per 10,000 persons, while it puts it on the lower end in 2021. Compared

to country averages, we find only few comparable units to Luxembourg. At the regional

level, however, we find several regions with more cases in 2020 and fewer ones in 2021,

further motivating our usage of regional data.

We use data on working from home and commuting inflow to further address changes

11



Figure 4: Change (%) in persons usually working from home for NUTS2 regions

(a) 2019-2020
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(b) 2020-2021
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Note: Data is from a special extraction from the EU-LFS. Persons usually working from home with
workplace at the NUTS 2 region shown in the figure and their location of residence in the associated
country of the region.

in mobility behavior as a response to the pandemic. A person is classified as usually

working from home when they were working at home half of the days that they worked in

a reference period of four weeks preceding the end of the reference week in the EU-LFS

survey. We focus on persons usually working at home with their workplace location in

the associated NUTS 2 region and their location of residence within the same country.4

However, this dataset does not capture commuting patterns across regions, which seems

particularly important for Luxembourg, which traditionally experiences a large commut-

ing inflow. To get a more complete picture of changes in mobility behavior with respect

to work, we consider persons never working from home at a regional level. This category

captures all persons commuting to work irrespective of their location of residence and

thus incorporates commuting inflow from other regions and countries.

Figure 4 shows yearly changes of persons usually working from home for NUTS 2

regions. Figure 4a shows the change from 2019-2020, i.e., the immediate effect of the

pandemic. Blue indicates an increase in working from home, whereas red indicates a

decrease. As expected, almost all regions experienced an increase in people working from

home. The figure zooms in on Luxembourg, which also experienced an increase, but notice

that the change is not particularly strong relative to other regions, i.e., Luxembourg is

not an outlier. In Luxembourg, the change of people usually working from home from

2019-2020 almost doubled at around +98%. Figure 4b shows the change from 2020-2021.

The map now shows a more nuanced picture. Some regions experienced a decrease in

4Ideally, we would want to focus on persons working and living in the same NUTS 2 region. However,
this is not available in the EU-LFS data structure.

12



Figure 5: Change (%) of persons never working from home for NUTS2 regions

(a) 2019-2020
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(b) 2020-2021
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Note: Data is from a special extraction from the EU-LFS. The figure shows yearly changes of persons
never working at home for NUTS 2 regions which are the location of the workplace of these persons
irrespective of their location of residence.

working from home, while some experienced another increase. Luxembourg is among the

latter group and experienced a change of around +28%.

Figure 5 shows yearly changes of persons never working at home for NUTS 2 regions.

Figure 5a shows percentage changes from 2020 to 2021. Overall, the map shows a de-

crease in persons never working from home, i.e. a decrease in commuters. This is to be

expected since the pandemic caused an increase in working from home in most regions.

Figure 5b shows percentage changes from 2020-2021 and shows a mixed picture. Some

regions experienced a further decrease in persons never working from home, while others

experienced an increase following the first year of the pandemic. Luxembourg experi-

enced a decrease in 2019-2020 and 2020-2021 of −12% and −10%, respectively. Again,

Luxembourg does not appear to have experienced a particularly strong change relative

to other countries.

4 Identification strategy

The inability to directly observe the potential outcomes of a specific unit both in the

presence and in the absence of a policy event (treatment) complicates establishing causal

relationships. In the case of Luxembourg, this translates to ‘what would the CO2 emis-

sions from road transport have been if the free public transport policy had not been

introduced?” To overcome this problem, it is necessary to design an appropriate identifi-

cation strategy that constructs a credible comparison group to serve as a counterfactual

for Luxembourg after the policy’s introduction.
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Given that Luxembourg differs significantly from other EU countries in observable

characteristics such as CO2 emissions per capita, GDP per capita, and motorization

rates (refer to Section 2), we conduct our analysis at the NUTS 2 level. This approach

is feasible because Luxembourg itself constitutes a NUTS 2 region, and it is likely that

we can find more comparable units to construct the counterfactual for Luxembourg at

the NUTS 2 regional level than at the country level. For instance, Berlin would probably

serve as a better comparison to Luxembourg than Germany as a whole. However, even

at a NUTS 2 level, Luxembourg records the highest per capita CO2 emissions from road

transport (refer Table A). We therefore need an estimation strategy that can handle these

complexities in our setting.

The canonical DID estimator calculates the difference in outcomes over time between

treated and control units and relies on the parallel trends assumption. This assumption

implies that, in the absence of treatment, the treated and control groups would have

followed similar trends over time. By assuming parallel trends, the DID estimator controls

for unobserved characteristics that remain constant over time, which might otherwise

confound the results. Additionally, the DID method assumes that any time-varying

shocks affecting the outcome are common to both treated and control groups, thereby

isolating the treatment effect. However, the parallel trends assumption is often untestable,

and in our specific setting, where Luxembourg already exhibits considerable differences

in observable characteristics, we have reduced confidence that this assumption holds.

Some drawbacks of the DID method can be mitigated by the Synthetic Control (SC)

method, which does not rely on the parallel trends assumption. Instead, the SC method

creates a synthetic control unit as a weighted combination of units from the donor pool,

ensuring that the pre-intervention outcomes of the synthetic unit closely match those

of the treated unit. Importantly, not all units in the donor pool receive equal weights;

higher weights are assigned to regions that are more similar to Luxembourg based on

predictors of CO2 emissions (Abadie, 2021). The validity of the SC method depends

on the trajectory of the outcome variable of the SC closely following that of the treated

unit over a long pre-intervention period. This close alignment lends confidence that

any deviations in outcome trends after the intervention can be attributed to the policy

intervention. However, the substantial differences in predictors of CO2 emissions between

Luxembourg and other units, coupled with Luxembourg’s status as the country and even

the NUTS 2 region with the highest per capita emissions, challenge the applicability of

this method in our context.

Therefore, we employ the recently proposed estimation procedure, the SDID approach

introduced by Arkhangelsky et al. (2021). SDID combines the strengths of both DID and

SC methods and circumvents the common drawbacks associated with traditional DID and

SC methods. Specifically, it overcomes the challenge of estimating causal relationships

when parallel trends are unlikely to hold in aggregate data for DID and eliminates the
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necessity for the treated unit to be within the convex hull of control units for SC. SDID

essentially constructs a synthetic parallel trend in for Luxembourg. Section 5 discusses

the SDID estimation procedure in detail.

Identification is further complicated by the COVID-19 pandemic coinciding with the

policy’s introduction. Since the pandemic was a global shock affecting all regions, its

effects should not technically bias our analysis, as both the treated and control units were

similarly exposed. However, regions adopted varying measures and policies to limit the

spread of the virus, which could have differential impacts on mobility across regions. For

instance, a higher number of COVID-19 cases may lead to shifts toward remote working,

online education, and changes in consumer behavior. These policy responses, potentially

influenced by the number of cases, could correlate with regional mobility restrictions. To

account for these factors, we control for regional average daily COVID-19 cases across

NUTS 2 regions.

Mobility patterns may have also shifted due to the pandemic. This is again only

problematic insofar as regions experienced such shift differently form one another. These

changes include individuals who did not work from home prior to the pandemic but

began and continued doing so after the COVID-19 outbreak. Consequently, mobility

within countries (and within regions) and commuting patterns across borders might have

changed. However, as discussed in detail in Section 3.2, Luxembourg did not experience

particularly significant changes relative to other regions. This mitigates the associated

threat to identification. It is nonetheless essential to control for these changes in the

empirical analysis.

Finally, to avoid bad comparisons with already treated units, we excluded NUTS

2 regions that introduced free fares during our sample period. We drop the following

regions before estimating our main results. Estonia (EE) introduced free public transport

in Tallin in 2013 and further extended it in 2017. Given that Estonia is in itself a NUTS

2 region, we drop the whole country. Dunkirk and Calais in France introduced free public

transport for all passengers in 2018 and 2020, respectively. Both are located within the

same NUTS 2 region (FRE1) that we drop. We also drop Cascais in Portugal (PT17),

which introduced free fares in 2020.

Several municipalities in Poland introduced some form of free public transport schemes

during our sample period. Štraub et al. (2023) chart the spatial distribution of these poli-

cies in Poland, which covers over 90 free-fare programs since 2007. Polish municipalities

that introduced free fares for everybody during our sample period cover 12 NUTS 2 re-

gions which we drop (PL11, PL12, PL21, PL22, PL31, PL34, PL41, PL43, PL51, PL52,

PL62, PL63). We also exclude the NUTS 2 regions surrounding Luxembourg to control

for possible spillover effects. These regions include the Province of Luxembourg (BE34)

and the Province of Liege (BE33) in Belgium, Trier (DEB2), and Saarland (DCE0) in

Germany, and Lorraine in France (FRF3).
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As a robustness check, we additionally drop regions that introduced free fares for spe-

cific groups (e.g., students, residents, elderly, etc.) or subsidized public transport during

our sample period. These cases can distort the estimated effect if these policies signifi-

cantly shifted the modal split in favor of public transport systems. Regions we drop in our

robustness checks include the following. Attica in Greece (EL30), and Nantes (FRG0),

Strasbourg (FRF1), and Paris (FR10) in France. These regions all introduced some form

of free public transport for residents and/or students (Fare free public transport, 2024).

Austria (AT) introduced a nationwide climate ticket for all public transport modes in

2021. This increased accessibility and significantly reduced prices for comparable tickets

prior to the policy introduction.

The different regions that we drop in our main specification as well as in the robustness

checks are shown in Figure 6. The figure zooms in on NUTS 2 regions in Europe to

highlight potentially bad controls. NUTS 2 regions that introduced free fares for all

passengers during our sample period are shown in darker blue. These are all the regions

we drop in our specification to obtain our main results. Those that introduced free fares

for specific groups only or introduced reduced fares are shown in lighter blue. These

regions are additionally excluded from our sample in a robustness check. The NUTS 2

ring around Luxembourg is shown in orange and is dropped in all specifications.

Figure 6: NUTS 2 regions - bad controls
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Note: NUTS 2 regions that are potential bad control are highlighted. The figure zooms in on NUTS 2

regions in Europe to better visualize regions that we intentionally drop in the analyses. Not all

uncolored regions are necessarily in the donor due to missing observations for some regions and

countries.
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5 Synthetic difference-in-differences (SDID)

We use the SDID methodology to estimate the impact of Luxembourg’s free public trans-

port policy on CO2 emissions from road transport. The analysis covers a sample period

from 2016 to 2021. As the policy is implemented in 2020, the analysis includes four

years before the policy is introduced and two years after, which allows for a comparative

analysis of the pre and post-policy effects.

The SDID estimator aims to consistently estimate an ATT without relying on parallel

pre-treatment trends between treated and not-treated units. The ATT is estimated by:

(
τ̂ sdid, µ̂, α̂, β̂

)
= arg min

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)2ω̂sdid
i λ̂sdid

t

}
, (1)

where the outcome of interest, Yit, is observed for each unit i at each time t, with i =

1, ..., N and t = 1, ..., T . Wit, indicates treatment, with Wit = 1 if unit i is treated at

time t and Wit = 0 else. µ is an intercept, αi and βt are unit and time fixed-effects,

respectively. ω̂sdid
i and λ̂sdid

t are unit and time weights, respectively.

Unit weights are computed to align pre-treatments trends between treated and control

units:

(
ω̂0, ω̂

sdid
)

= arg min
ω0∈R,ω∈Ω

Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYit −
1

Ntr

N∑
i=Nco+1

Yit

)2

+ ζ2Tpre||ω||22, (2)

with Ω = {ω ∈ RN
+ , with

∑Nco

i=1 ωi = 1 and ωi = 1/Ntr ∀ i = Nco+1, ..., N}, where ||ω||2 is

the Euclidean norm and R+ denotes the positive real line. Nco and Ntr are the number of

untreated and treated units, respectively. Similarly, Tpre is the number of pre-treatment

periods. ζ is a regularization parameter to increase dispersion and ensure unique weights,

it is defined in Arkhangelsky et al. (2021). Contrary to traditional synthetic control unit

weights, these SDID weights do not aim to find comparable regions in absolute terms

conditional on covariates, but the procedure rather assigns weights to align pre-treatment

trends in the (adjusted) outcome.

Time weights are computed to align pre- and post-treatment periods for untreated

units:

(
λ̂0, λ̂

sdid
)

= arg min
λ0∈R,λ∈Λ

Nco∑
i=1

λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=Tpre+1

Yit

2

+ ζ2Nco||λ||2, (3)

with Λ = {λ ∈ RT
+, with

∑Tpre

t=1 λt = 1 and λt = 1/Tpost ∀ t = Tpre + 1, ..., T}, where the

regularization term ensures unique weights and is very small.

In essence, SDID estimates the ATT, τ̂ sdid, from a weighted two-way fixed-effects
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regression. Compared to SDID, DID approaches use an unweighted two-way fixed-effects

regression, thus relying on parrallel pre-treatment trends in aggregate data. SC relaxes

this requirement but uses only unit-specific weights and does not explicitly weigh time

periods optimally. Contrary to SC method, SDID additionally allows for level differences

between treatment and synthetic control units in estimating optimal weights. Following

this rationale, Arkhangelsky et al. (2021) argue that SDID is more flexible compared to

DID and SC methods.

5.1 Handling covariates

We follow the procedure for handling covariates outlined in Arkhangelsky et al. (2021)

and refined in Clarke et al. (2023). Handling covariates in this setting is treated as a

pre-modeling approach, in which the outcome variable is adjusted by covariates before

estimation. The procedure does not put any stationarity requirements on the covariates,

i.e., they can be time-varying. This adjustment procedure contains two steps. In the

first step, we estimate the coefficients of the covariates. To obtain estimates that are

unconfounded by the treatment itself, we follow Kranz (2022) and exclude the treated

unit in the estimation. We run the following model:

Y co
it = αi + γt + Xco

it β + uit, (4)

where the super-script co indicates control units, Y co
it measures CO2 emissions from road

transport, Xco
it collects covariates and may include daily COVID cases, the number of

commuters, and the number of persons usually working from home, fuel prices, freight

transportation, and GDP per capita. To capture differences between regions and time,

we can include region-specific effects, αi, and time-specific effects, γt. In a second step,

we adjust the outcome variable for the aforementioned effects for all units:

Ŷ adj
it = Yit −Xitβ̂. (5)

Finally, the SDID procedure is then applied to the adjusted outcome variable.

5.2 Placebo inference and event-study analysis

Arkhangelsky et al. (2021) show that the estimated ATT, τ̂ sdid, is asymptotically nor-

mal. This means that conventional confidence intervals can be used to conduct asymp-

totically valid inference if the asymptotic variance, V̂τ , can be consistently estimated:

τ ∈ τ̂ sdid ± zα/2

√
V̂τ . Arkhangelsky et al. (2021) propose several estimators for the

asymptotic variance (bootstrap, jackknife, placebo). But in cases where there is only

one treated unit (i.e., Ntr = 1), only placebo estimates are well defined. The idea of
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this procedure is to replace the exposed unit with unexposed units, then randomly assign

those units to a placebo treatment and compute a placebo ATT. This is repeated many

times to obtain a vector of placebo ATTs. The variance of this vector can then be used

to obtain an estimate for the asymptotic variance.

To evaluate the robustness of the results, we perform an event-study analysis, which

enables us to study the dynamics of the policy effect and allow us to evaluate the cred-

ibility of pre-treatment parallel trends. We follow the discussion in Clarke et al. (2023)

on how to compute these estimates manually. In principle, we want to estimate the dif-

ferences in the outcome variable between treated and the non-treated synthetic control

region for each time period t. This allows us to evaluate parallel pre-treatment trends by

studying whether these differences changed over time prior to the policy adoption. Ad-

ditionally, we can study the evolution of the treatment over each post-treatment period.

The difference at each time period t is denoted as dt and given by:

dt = (Ȳ 1
t − Ȳ 0

t ) − (Ȳ 1
base − Ȳ 0

base), (6)

where 1 indicates a treated unit and 0 the non-treated synthetic control unit. The first

term in brackets calculates the difference in mean CO2 emissions at time period t for

treated and control units. The second term in brackets captures the difference between

the pre-treatment baseline means of these units. The baseline outcomes are weighted

aggregates over pre-treatment periods rather than arbitrarily chosen time periods (as is

usually done in DID applications). They are given by:

Ȳ 1
base =

Tpre∑
t=1

λ̂sdid
t Ȳ 1

t , (7)

and

Ȳ 0
base =

Tpre∑
t=1

λ̂sdid
t Ȳ 0

t , (8)

where the time weights, λ̂sdid
t , come from equation (3).

Confidence bands around the estimated dt’s are generated with a placebo-based ap-

proach in the following sequence:

(i) Exclude the treated unit (in our case Luxembourg) from the sample

(ii) Randomly assign treatment to a unit (from the remaining units, which are all

controls units)

(iii) Calculate the outcome adjusted for covariates following equations (4) and (5)

(iv) Compute equation (6) and store the result
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(v) Repeat 2-4 many times (e.g., 1,000 times)

(vi) Obtain the 5% quantile from the sample distribution of the stored results for each

time period t.

Note that in the case the SDID estimation includes covariates, the outcome has to

be newly adjusted every time treatment is assigned to a random unit. This is necessary

because equation (4) estimates the coefficients of the covariates based on the sample of

not-treated units. This sample slightly changes each time treatment is re-assigned.

6 Results and robustness

This section reports our main results as well as several robustness checks. We study

several model specifications, which are outlined in Section 6.1. These include models

without any covariates, one with COVID-related covariates, and one with a set of addi-

tional controls; the latter being our main specification. Section 6.2 tests the robustness of

the main results. These checks include in-time placebo tests, specifications that exclude

some of our controls, fuel-tourism effects, as well as results from a restricted sample. We

find that our results are robust against these checks.

6.1 Results

We provide results for three different model specifications. The first one does not adjust

emissions for covariates; it is based on equation (1). The second specification adjusts

the outcome variable for COVID-19 related covariates as described in Section 5.1. The

auxiliary regression is given by:

log(CO2/cap)coit =αi + γt + β1asinh(cases)coit + β2asinh(nvrwfh)coit +

β3asinh(wfh)coit + uit, (9)

where the outcome variable is the log of road transport CO2 emission per capita. It

is regressed on the inverse hyperbolic sine (asinh) of COVID cases, on people usually

working from home (wfh) with their work-place location in the associated NUTS 2

region, and on people never working from home (nvrwfh) with their work-place location

in the associated NUTS 2 region. We use the inverse hyperbolic sine transformation on

covariates that include zero-values because the natural logarithm of zero is undefined and

the transformation approaches the natural log. This allows us to interpret the estimated

coefficients as elasticities under certain assumptions.5

5The interpretation of the coefficients of the covariates as elasticities in these cases is sensitive to
the size of the untransformed average value of the covariates. As suggested by Bellemare and Wichman
(2020), we multiply these covariates by a constant to generate average values greater than 10, which
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The third specification is our main specification and adjusts the outcome variable for

additional covariates and is given by:

log(CO2/cap)coit =αi + γt + β1asinh(cases)coit + β2asinh(nvrwfh)coit +

β3asinh(wfh)coit + β4log(gdp)coit + β5log(ei)coit +

β6diesel
co
it + β7petrol

co
it + β8log(frt)coit + uit. (10)

The set of covariates that we consider in this specification additionally includes: the

log of real GDP per capita, (gdp), and energy intensity, (ei), measured as average CO2

emissions of newly registered vehicles, (diesel), diesel, and (petrol), petrol prices in real

terms (adjusted with the harmonized index of consumer prices - HICP) to capture cross-

unit variations in fuel prices, (frt), log of freight transport, measured as tons of goods

loaded in the region, to control for changes in freight transport. Estimation results for

the auxiliary regressions based on Specifications (9) and (10) are shown in Table B.1 in

Appendix B.

We provide estimates of the ATTs for the periods that the treatment is in effect, i.e.,

2020-2021, as well as an event-study analysis over the period 2016-2021 in Figure 7 for

the three different specifications. Estimates for the ATTs are shown in Figure 7a and

the event-study estimates are shown in Figure 7b. Estimates are based on the following

model specifications that differentiate in the way they adjust the outcome variable. 1)

not adjusting for covariates - no covariates, 2) adjusting only for CCOVID-19 related

covariates - only COVID covariates, and 3) adjusting for the full set of covariates - all

covariates. The latter specification produces our main results. The time weights for this

variant are assigned to 2017 and 2019 with weights of 0.74 and 0.26, respectively. Figure

7b shows no statistically significant violation of pre-treatment trends.

The estimated ATTs for the specification including all covariates indicate an effect at

around −0.061, i.e., a 6.1% reduction in transport CO2 emissions as a response to the free-

public transport policy implemented in March 2020. This is less in magnitude compared

to controlling only for COVID-19 related covariates, which yields an estimated ATT of

around −11.8%. The specification with no covariates provides the largest estimated ATT

at almost −15%. All estimates are statistically significant at the 5% significance level.

The event-study analysis shows no violation of parallel pre-treatment trends for all spec-

ifications. This also indicates that the tram extension in 2017 did not significantly alter

Luxembourg’s emissions trajectory compared to our synthetic control. Post-treatment

effects show statistical significance in 2020 for all three specifications. In 2021, the confi-

dence intervals based the specifications that adjusts the outcome variable for all covariates

slightly cross the dashed zero-line at the 5% significance level.

The control units that contribute to the synthetic control together with their respec-

provides stable elasticities. The reported coefficients appear to be robust in our specifications.
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Figure 7: ATTs and event study estimates

(a) ATTs since treatment in 2020
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Note: ATTs and event study estimates of the impact of free public transport on road emissions (CO2)

per capita in Luxembourg for different model specifications with 95% confidence bands based on placebo

estimates. The following NUTS 2 regions are dropped from the donor pool: NUTS 2 ring around

Luxembourg, regions that introduced free public transport for all passengers during our sample period.

tive weights for the third specification are graphically shown in Figure C.1 in Appendix C.

The regions with the largest weights come from Belgium, Denmark, Spain, Hungary, Italy,

and Poland. Regions from the Netherlands also receive sizable weights. Czechia, Finland,

France, and Slovakia enter the synthetic control with smaller weights and only 1-2 regions

each. Table C.1 in Appendix C shows the NUTS 2 regional code and the name of the

region together with the specific unit weights assigned to them.

Additionally, the table presents the realizations of pre-treatment control variables for

2019. Belgium, Denmark, Finland, and the Netherlands are among the EU countries

with the highest GDP per capita and thus most comparable to Luxembourg in this

respect. While Poland and Italy have the highest motorization rate after Luxembourg.

It is therefore quite reasonable that the regions contributing to the synthetic control are

taken from these countries. These values are quite heterogeneous across controls as well

as compared to Luxembourg. This highlights the difference in SDID compared to SC.

While the latter tries to match the treated unit to a synthetic control in absolute levels,

the former assigns weights to align pre-treatment trends, essentially creating a synthetic

parallel trend. These trends do not necessitate that the magnitude of controls match well

but rather focus on their trends before treatment.

Figure C.2 in Appendix C shows how well the SDID estimation aligns pre-treatment

trends for Luxembourg and its synthetic control. Luxembourg is shown as a solid line and

the weighted average across control regions according to the assigned SDID unit weights

as a dashed line. The figure also shows two additional averages over different groups of

control regions. These include the average pre-treatment trend in the adjusted outcome

variable over all regions and the unweighted average over regions that received a positive

weight. Figure ?? shows the absolute level of trends, while Figure ?? standardizes the
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trends so that they are visually more easily comparable.6

The absolutes levels of the adjusted outcome differs markedly between Luxembourg

and the different controls. This reinforces our argument that the SDID procedure is

preferable over standard DID and SC methods because it does not assume similar absolute

values in any steps of its procedure. We can see from the standardized trends in part b of

the figure that pre-treatment trends for Luxembourg and the average across all regions

shows the biggest visual difference in trends. The unweighted average across regions

that received a positive weight is a much better fit. The best fit seems to be between

Luxembourg and the weighted average according to the SDID unit weights. This visual

inspection affirms that the SDID assigns unit weights to create a synthetic parallel trend

to Luxembourg compared to a simple average of NUTS 2 regions.

6.2 Robustness

In this sub-section, we run a set of robustness tests to assess the sensitivity of our main

results. Overall, the robustness checks confirm the stability and reliability of our main

findings. They include sensitivity analyses across different model specifications, an in-

time placebo test, an analysis using a restricted donor sample, and the inclusion of relative

fuel prices. They all yield consistent results, strengthening the validity of our conclusions

and provide further evidence that our estimated effects are not driven by model speci-

fication choices or sample selection biases, lending credibility to our estimation results.

The robustness checks are outlined in some detail below.

In-time placebo: We perform an in-time placebo (also referred to as back-dating

test) as suggested by Abadie (2021). In this test, we assign the free public transport policy

to 2019, the year before its actual introduction. Since the treatment is artificially assigned

to a date prior to the treatment we should not observe a significant post-placebo treatment

effect. Figure D.1 in Appendix D shows the results of this exercise. The solid black line

represents our main specification with all covariates, and the dot-dash line represents the

specification without covariates. We do not estimate the specification adjusted only for

COVID-19 covariates since the policy is back-dated before the pandemic. The confidence

bands at the 5%-significance level clearly encompass the zero line, indicating no significant

treatment effect in 2019. The absence of a post-placebo treatment effect provides further

validation for our estimated results.

Restricted sample: We also conduct our analysis on a more restricted donor sam-

ple to further test the robustness of our results. In this analysis, we exclude regions

that introduced any form of public transport subsidy affecting specific segments of the

population, as described in Section 3. We additionally exclude Torrevieja in Spain, Livi-

6Standardization is performed by subtracting the mean and dividing by the standard deviation within
each group.
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gno in Italy, Attica in Greece, and Nantes, Strasbourg, and Paris in France, all of which

introduced some form of free public transport for residents and/or students (Fare free

public transport, 2024). We also exclude all Austrian regions due to the nationwide cli-

mate ticket introduced in 2021, which increased accessibility and significantly reduced

prices for comparable tickets. The results of our analysis using this restricted sample are

reported in Figure D.2 in Appendix D. Part (a) of the figure shows the estimated ATTs

of our three specifications. The specification that includes all covariate adjustments esti-

mates the ATT at −0.06, statistically identical to our main results. Part (b) of the figure

shows the corresponding event-studies. Again, the trajectories and confidence bands are

visually indistinguishable from the ones based on the larger sample.

Alternative specifications: To further assess the robustness of our main results

shown in Figure 7, we test their sensitivity to a set of alternative model specifications.

Given that our measures for people working from home and those commuting to work

likely capture similar dynamics7 to a certain degree, we test the sensitivity of our results

by excluding one or the other from our specifications. Additionally, Table B.1 shows that

the coefficient for log(frt) (log of freight transport) is statistically insignificant. Conse-

quently, we estimate the following specifications, each excluding different combinations of

these covariates: a model excluding controls for freight transport (Spec 1), a model omit-

ting controls for working from home (Spec 2), a model excluding both freight transport

and working from home (Spec 3), a model excluding the commuting variable, nvrwfh

(Spec 4), and a model excluding both the commuting variable and freight transport (Spec

5). The results of these sensitivity analyses are displayed in Figure D.3 and Table D.1 in

Appendix D. All five alternative specifications yield estimates similar to our main spec-

ification, with the estimated ATTs slightly below our main specification’s estimate of

approximately −6.1%. The consistency of the estimates across these five different model

specifications underscores the robustness of our findings and confirms their reliability to

the inclusion or exclusion of various controls.

Fuel tourism: We now turn to a brief discussion on fuel tourism. Luxembourg typ-

ically enjoys lower fuel prices than its neighbouring regions, which makes it susceptible

for fuel tourism. This leads to higher fuel consumption within Luxembourg, subsequently

increasing transport emissions captured in EDGAR. Therefore, an increase in fuel prices

in Luxembourg, relative to its neighbouring regions could reduce fuel tourism and thus

emissions. This effect would be unrelated to the free public transport policy and confound

our estimates. We already control for absolute fuel prices in our main specification, which

should capture this effect to some degree. Arguably fuel tourism is more adequately ac-

counted for by fuel prices of Luxembourg relative to its neighbours. We now examine,

how well the fuel tourism effect is captured by fuel prices in absolute terms in our model.

Figure D.4 in Appendix D compares both absolute and relative fuel prices between Lux-

7They show a moderate correlation of around 0.6.
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embourg and its neighbouring regions. Throughout our sample period, Luxembourg’s

absolute fuel prices are consistently lower than those of its neighbours, resulting in rela-

tive prices below one. While relative prices compared to Germany remain fairly stable,

they increase relative to Belgian and French regions in 2020, potentially discouraging fuel

tourism and reducing fuel consumption in Luxembourg.

To test the robustness of our estimates, we re-estimate our main specification incor-

porating relative fuel prices, calculated as the fuel price of a NUTS 2 region relative to

the mean of its neighbours that are not part of the same country, as an additional control.

The estimated ATT is −0.0604 and is statistically indistinguishable from our main result

(−0.0612). Similarly, the event-study estimates align closely with our main results. We

attribute this consistency to several factors. First, absolute fuel prices may partly reflect

the effects of relative prices. Second, the relative fuel price in Luxembourg remained be-

low one throughout the sample period, maintaining an incentive for fuel tourism. Third

(and arguably most importantly), the estimated ATT is based on a comparison between

weighted averages of the pre-and post-treatment periods. As shown in Table D.2 in Ap-

pendix D, there is no significant difference between these weighted averages for diesel

and petrol prices in Luxembourg relative to its neighbors. This finding suggests that the

SDID estimation effectively captures regions and time periods that are comparable and

robust to observed changes in relative fuel prices.

7 Discussion

We now discuss the estimated effect size of Luxembourg’s free public transport policy,

implemented in 2020, on CO2 emissions from road transport. We attribute the estimated

ATT of −6.1% to a modal shift from private motorized transport to public transport and

ask whether this estimated effect size is reasonable. Some may perceive 6.1% reduction

as modest, considering the comprehensive nature of the policy. Conversely, others might

argue that this effect is disproportionately large given the existing modal split in Luxem-

bourg, where public transport accounts for approximately 15% of journeys and private

vehicles dominate with around 80% (we will return to this issue in more detail below).

Therefore, to evaluate the plausibility of our estimate, we employ a back-of-the-envelope

calculation from two perspectives: first by looking at changes in car traffic, and second

by looking at increases in the use of public transport.

We begin by examining traffic count data from Luxembourg’s open data portal (Gou-

vernement du Grand-Duché de Luxembourg, 2023). Recall that Figure 1 maps traffic

posts in Luxembourg. We compute the total bi-directional car traffic volume reported

across all the traffic posts. This volume increased by around 7% in 2019 relative to 2018.

Assuming this upward trend in car travel would have continued, the free public transport

policy should then reduce, if not entirely negate, this growth. Indeed, travel volume
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almost stagnated from 2019-2021 with a slight decrease of −0.4%. However, it is essen-

tial to account for the impact of COVID-19-related travel restrictions, which drastically

reduced mobility in 2020. In Luxembourg, we observe a sharp decline in car travel of

around 10% in 2020, likely due to the immediate effects of pandemic restrictions. The

subsequent year, 2021 experienced an 11% rebound in car travel, almost mirroring the

decline observed in 2020. This pattern suggests a transient impact of the pandemic on

car travel behavior.

Next, we resort to changes in public transport usage of the tram, where usage data is

available, to further examine the compatibility of our estimates. Consider the following

back-of-the-envelop calculation. Following Bigi et al. (2023), we assume a modal split

where private vehicles account for 80% and public transport for 15% of total transport.

We further assume that the observed reduction in CO2 emissions results from a modal

shift from private vehicles to public transport. A 6.1% reduction in CO2 emissions from

road transport then implies a corresponding decrease in private vehicle usage by approx-

imately 4.88%. This decrease is derived from the fact that private vehicles represent 80%

of the modal split and thus contribute the majority of emissions reductions (calculated

as 80% of the 6.1% reduction). To maintain the overall transport capacity, public trans-

port usage must increase by approximately 33%, calculated by dividing the reduction in

private vehicle usage (4.88%) by the initial share of public transport (15%).

To assess the credibility of this effect size, we utilize data on the average daily number

of people using trams on weekdays from the OECD (2023). In February 2020, this

average tram usage was at around 31,000 persons. This increased to around 36,000 in

February 2021 and to around 53,000 in February 2022. This amounts to an increase

of around 16% and 47% from 2020-2021 and 2021-2022, respectively. These numbers

align with our estimates, suggesting that our effect size is reasonable. Additionally, we

can relate these results to the LUXmobile survey, conducted by the Luxembourg City

Council (Luxmobile, 2020). This survey reports that the free public transport policy

has led to an increase in public transport usage of around 30% in 2022, further adding

credibility to our estimate. While the descriptive analysis does not direclty validate the

causal estimates, the observed figures are consistent with our estimated effect size, lending

further credibility to our findings.

Finally, we calculate the associated marginal abatement cost of carbon for the policy

as the government expenditure per ton of CO2 abated. A simple calculation takes the

foregone revenue from ticket sales of around 41 Mio. Euros and compares it to the tons

of CO2 emissions abated according to our estimates. The latter are calculated as the

counterfactual post-treatment emissions for Luxembourg: 1
Tpost

∑T
t=Tpre+1CO2tr

t / (1 − τ̂),

where tr indicates the treated unit. With this back-of-the-envelop calculation, we esti-

mate a marginal abatement cost of EUR 156 per ton of carbon. This is, of course, a

crude estimate and does not capture the full costs nor the additional non-CO2-benefits
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of the policy. As Hahn et al. (2024) argue, such calculations overlook the benefits to

inframarginal individuals—those who do not alter their behavior in response to the pol-

icy—thereby potentially underestimating the policy’s overall effectiveness. They suggest

a more comprehensive approach, the Marginal Value of Public Funds (MVPF) framework,

which captures these benefits and provides a more accurate assessment of the policy’s

impact. We leave such detailed calculations to future research.

8 Conclusion

In this paper, we estimate the causal effect of Luxembourg’s free public transport policy

introduced in 2020 on road transport emissions. Our findings indicate an estimated effect

of approximately −0.061, corresponding to a reduction in road transport CO2 emissions

of around 6.1%. The effect remains robust across a range of model specifications that

account for factors such as the COVID-19 pandemic, fuel prices, the prevalence of remote

working, and commuting patterns. Additional robustness tests, including in-time placebo

tests, sample restrictions, and fuel tourism further corroborate our main findings. Our

results align with the descriptive evidence from traffic volume data and the evidence from

the LUXmobile survey, which show an increase in public transport use as a result of the

free public transport policy. The consistency of these results supports the conclusion that

the policy had a statistically significant causal effect, indicating a behavioral shift from

private car use to public transport.

Our findings are of high policy relevance. The reduction in CO2 emissions from road

transport resulting from Luxembourg’s free public transport policy provides compelling

evidence of the effectiveness of such policies in contributing to climate change mitigation

efforts. This insight is particularly relevant for policymakers in urbanized, affluent areas

with well-developed public transport systems, similar to Luxembourg. As countries strive

to meet increasingly ambitious climate targets, the integration of free public transport

policies with other sustainable transport and urban planning initiatives could offer a

holistic solution to reducing CO2 emissions and fostering a sustainable future.
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Appendix A

Table A.1: Data description

Variable
(variable name)

Description Measurement Sources

CO2 emissions
log(co2)

CO2 emission from road trans-
port sector. IPCC-1996 sector
category 1.A.3.b

log of CO2 per capita EDGARv8

GDP
log(gdp)

Regional GDP by NUTS 2 re-
gions

log of million purchas-
ing power standard
per inhabitant

Eurostat re-
gional statis-
tics

covid cases
asinh(cases)

Daily number of new covid 19
cases aggregated to the annual
level, for each NUTS2 region

inverse hyperbolic sine
of number of cases

European
region tracker

commuters
asinh(nvrwfh)

Number of persons who never
worked from home in the refer-
ence period of four weeks preced-
ing the end of the reference week
for all NUTS 2 region, which are
the location of the workplace
irrespective of the location of resi-
dence

inverse hyperbolic
sine of number of
commuters

EU Labour
Force Survey

work from home
asinh(wfh)

The number of persons who usu-
ally worked from home in the
reference period of four weeks
preceding the end of the reference
week. For NUTS 2 regions which
are the location of the workplace
with the location of residence in
the same country

inverse hyperbolic
sine of the number of
workers

EU Labour
Force Survey

emissions intensity
log(ei)

Avg CO2 emissions for new pas-
senger cars

log of CO2/km Eurostat

diesel price
diesel

Avg annual price of diesel ad-
justed for inflation

Euros per liter Eurostat
weekly oil
bulletin

petrol price
petrol

Avg annual price of petrol ad-
justed for inflation

Euros per liter Eurostat
weekly oil
bulletin

freight
log(frt)

Total good loaded in the NUTS 2
region

log of million tonne
per km

Eurostat re-
gional statistic
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Appendix B

Table B.1: TWFE regression for specification projected with all covariates and only
adjusted for COVID-related controls

(1) (2)

Coef. SE Coef. SE

asinh(cases) −0.0284∗∗∗ (0.0049) −0.0119 (0.0072)

asinh(nvrwfh) 0.0789∗∗∗ (0.0264) 0.1217∗∗ (0.0480)

asinh(wfh) −0.0148∗∗ (0.0062) −0.0459∗∗∗ (0.0101)

log(gdp) 0.3613∗∗∗ (0.0731)

log(ei) 0.2219∗∗∗ (0.0418)

diesel −0.7463∗∗∗ (0.0919)

petrol 0.2765∗∗ (0.113)

log(frt) 0.0148 (0.0097)

Obs 816 816

N 136 136

Note: Dependent variable is log of CO2 per captia, log(co2), standard errors are in parantheses and clustered at the regional

level. ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Appendix C

Figure C.1: Unit weights - all covariates
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Table C.1: Summary values of selected variables in 2019 of NUTS 2 regions that
received positive weights

NUTS2 Name Weights CO2pc GDPpc EI NvrWFH WFH Diesel Petrol

LU00 Luxembourg - 8.2879 78700 133.0 348.67 33.90 1.0387 1.1432

ITF6 Calabria .0378393 1.5686 17700 119.4 512.71 14.87 1.4324 1.5237

ITG1 Sicilia .0371127 1.3241 18400 119.4 1284.27 31.61 1.4324 1.5237

PL42 Zachodniopomorskie .0325411 1.7336 19000 130.4 600.91 31.09 1.1201 1.1095

ITC3 Liguria .032517 1.1649 32900 119.4 582.16 28.68 1.4324 1.5237

HU31 Észak-Magyarország .0324565 1.6624 15100 129.7 426.95 4.25 1.1198 1.0703

HU32 Észak-Alföld .029067 1.4100 14700 129.7 593.31 4.62 1.1198 1.0703

ITF1 Abruzzo .0288337 2.4989 25700 119.4 466.53 19.18 1.4324 1.5237

PL61 Kujawsko-pomorskie .0271732 1.7620 18200 130.4 713.43 33.88 1.1201 1.1095

BE35 Prov. Namur .0267455 3.8722 24500 121.5 125.37 14.52 1.3334 1.2908

ITI4 Lazio .0259829 1.0559 35200 119.4 2285.14 102.91 1.4324 1.5237

BE32 Prov. Hainaut .0256232 2.3871 22800 121.5 322.54 37.43 1.3334 1.2908

BE10 Rég. de Bruxelles-Capitale .0254423 0.4279 63400 121.5 483.18 31.07 1.3334 1.2908

ITC1 Piemonte .024585 1.9573 32000 119.4 1707.21 75.30 1.4324 1.5237

ITF3 Campania .0242078 0.7966 19500 119.4 1519.75 42.20 1.4324 1.5237

HU23 Dél-Dunántúl .0239685 2.2659 15500 129.7 338.67 3.98 1.1198 1.0703

ITF2 Molise .0238194 3.3549 21900 119.4 101.97 2.38 1.4324 1.5237

BE25 Prov. West-Vlaanderen .0233038 2.0159 35700 121.5 375.18 50.19 1.3334 1.2908

BE22 Prov. Limburg (BE) .0230481 2.4709 29700 121.5 248.93 21.71 1.3334 1.2908

ITG2 Sardegna .022819 2.5616 22000 119.4 561.49 16.29 1.4324 1.5237

ITF4 Puglia .0221319 1.0517 19600 119.4 1167.69 25.65 1.4324 1.5237

ITI3 Marche .0221046 1.7500 28400 119.4 597.78 19.14 1.4324 1.5237

ITF5 Basilicata .0219905 2.9963 23300 119.4 188.59 4.19 1.4324 1.5237

HU22 Nyugat-Dunántúl .0217611 1.9203 22200 129.7 438.74 4.25 1.1198 1.0703

HU21 Közép-Dunántúl .0201367 1.9231 21100 129.7 453.53 3.48 1.1198 1.0703

BE23 Prov. Oost-Vlaanderen .0190552 1.8888 33500 121.5 478.84 48.61 1.3334 1.2908

DK05 Nordjylland .0187648 2.3619 32900 111.9 199.54 21.74 1.3608 1.5686

ITH5 Emilia-Romagna .0184892 1.9062 36600 119.4 1950.99 84.01 1.4324 1.5237

ITH3 Veneto .0181474 1.7508 34200 119.4 2043.72 88.04 1.4324 1.5237

BE21 Prov. Antwerpen .0178575 1.4795 43400 121.5 573.01 54.58 1.3334 1.2908

ES12 Principado de Asturias .0177897 2.0848 25000 121.3 337.11 25.69 1.1645 1.2443

ITI1 Toscana .0177173 1.6780 33100 119.4 1521.73 67.87 1.4324 1.5237

ITH4 Friuli-Venezia Giulia .0172797 2.4731 32700 119.4 481.83 24.46 1.4324 1.5237

ITI2 Umbria .0169312 1.9201 26600 119.4 336.74 12.90 1.4324 1.5237

HU33 Dél-Alföld .016146 1.6012 16500 129.7 534.09 3.24 1.1198 1.0703

NL11 Groningen .0145252 1.4295 36000 98.4 185.30 38.05 1.2825 1.5581

DK03 Syddanmark .0138564 2.1226 35300 111.9 412.18 46.22 1.3608 1.5686

ITC4 Lombardia .0137334 0.9765 39900 119.4 4252.88 173.33 1.4324 1.5237

ITC2 Valle d’Aosta .0126263 4.8063 39000 119.4 57.96 1.90 1.4324 1.5237

BE24 Prov. Vlaams-Brabant .0120106 2.0686 39900 121.5 323.36 30.61 1.3334 1.2908

ES43 Extremadura .009485 3.3205 20700 121.3 353.45 19.64 1.1645 1.2443

ES41 Castilla y León .0092571 4.7266 26800 121.3 888.02 47.45 1.1645 1.2443

ES11 Galicia .0087266 2.1530 25600 121.3 975.87 59.90 1.1645 1.2443

NL42 Limburg (NL) .0079331 1.8820 35000 98.4 384.30 68.80 1.2825 1.5581

ITH2 Prov. Auton. di Trento .0073333 2.6529 39600 119.4 225.23 8.63 1.4324 1.5237

DK02 Sjælland .0073143 2.2742 27500 111.9 228.76 29.58 1.3608 1.5686

ITH1 Prov. Auton. di Bolzano .0057474 2.8928 48700 119.4 249.26 15.82 1.4324 1.5237

NL13 Drenthe .0057257 3.0915 27000 98.4 163.22 32.62 1.2825 1.5581

DK04 Midtjylland .0052543 1.9565 36400 111.9 461.50 52.48 1.3608 1.5686

CZ08 Moravskoslezsko .0050482 1.4662 22800 128.7 529.36 25.00 1.1444 1.1520

ES62 Región de Murcia .0049217 1.7941 23300 121.3 549.35 25.37 1.1645 1.2443

ES42 Castilla-La Mancha .0044123 4.4251 22400 121.3 688.99 36.92 1.1645 1.2443

ES21 Páıs Vasco .0042974 1.1363 36500 121.3 869.33 39.64 1.1645 1.2443

Continued on next page

30



Table C.1 continued from previous page

NUTS2 Name Weights CO2pc GDPpc EI NvrWFH WFH Diesel Petrol

ES24 Aragón .0042491 3.3303 30900 121.3 533.90 28.94 1.1645 1.2443

ES23 La Rioja .0037282 2.9902 30200 121.3 124.94 4.94 1.1645 1.2443

NL34 Zeeland .0035329 1.6308 31500 98.4 123.80 30.61 1.2825 1.5581

NL12 Friesland (NL) .0032041 2.6128 27700 98.4 235.10 42.09 1.2825 1.5581

ES13 Cantabria .0029762 2.0262 26200 121.3 209.55 11.44 1.1645 1.2443

FI1D Pohjois- ja Itä-Suomi .0027892 3.3077 28300 115.3 411.31 58.80 1.3593 1.4714

DK01 Hovedstaden .0026687 0.6252 50900 111.9 651.72 86.50 1.3608 1.5686

NL33 Zuid-Holland .0026372 1.1515 38400 98.4 1111.51 247.64 1.2825 1.5581

FR10 Ile-de-France .0025525 0.5824 56700 113.8 4075.87 412.68 1.3708 1.4339

NL41 Noord-Brabant .0020182 1.8294 40200 98.4 869.95 184.98 1.2825 1.5581

NL22 Gelderland .0010571 2.0042 33500 98.4 656.29 173.67 1.2825 1.5581

SK02 Západné Slovensko .0009302 1.3858 20500 130.4 723.61 40.52 1.1556 1.2464

NL23 Flevoland .0007569 2.4235 29300 98.4 113.30 24.36 1.2825 1.5581

ES22 Comun. Foral de Navarra .0006879 2.5927 34400 121.3 271.50 11.67 1.1645 1.2443

ES61 Andalućıa .0003595 1.2590 21000 121.3 2805.20 149.95 1.1645 1.2443

FI1C Etelä-Suomi .0002549 1.5876 30300 115.3 360.17 72.31 1.3593 1.4714

Note: Weights refer to unit weights assigned by the SDID method. CO2 pc is CO2 emissions measured in tonnes per

capita. GDP pc is GDP per capita in Purchasing Power Standards. EI is the average CO2 emissions per km from new

passenger cars. NvrWFH refers to all persons never working from home in a NUTS2 region regardless of their region of

residence. WFH is the number of of persons usually working from home in a NUTS2 region with the residency in the same

country. Diesel is the annual average real price of diesel. Petrol is the annual average real price of petrol. All values are

for 2019.

Figure C.2: Pre-treatment trends of the adjusted log CO2 per capita emissions
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units is the pre-treatment average trend of all units in the donor pool. Simple avg positively weighted

units is the pre-treatment average trend of the units in the donor pool that received positive weights.
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Appendix D

Figure D.1: In-time placebo test
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Note: Results are re-estimated by back dating the policy to 2019, prior to the actual policy implemen-

tation.

Figure D.2: ATTs and event study estimates - restricted sample

(a) ATTs since treatment in 2020 using the
restricted sample
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Note: ATTs and event study estimates of the estimated impact of free public transport on road emissions

(CO2) per capita in Luxembourg using the restricted sample for different model specifications with 95%

confidence bands based on placebo estimates.
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Figure D.3: ATTs across different model specifications
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Note: Spec 1 excludes controls for freight transport; Spec 2 excludes controls for working from home;

Spec 3 excludes controls for both freight and working from home, Spec 4 excludes controls for commuting

(never working from home); Spec 5 excludes controls for both freight and commuting.

Table D.1: Sensitivity analysis across different model specifications

(1) (2) (3) (4) (5)

asinh(cases) -0.0281∗∗∗ -0.0265∗∗∗ -0.0261∗∗∗ -0.0307∗∗∗ -0.0303∗∗∗

(0.00489) (0.00480) (0.00480) (0.00515) (0.00518)

asinh(nvrwfh) 0.0800∗∗ 0.102∗∗∗ 0.103∗∗∗

(0.0265) (0.0285) (0.0286)

asinh(wfh) -0.0151∗ -0.0224∗∗∗ -0.0227∗∗∗

(0.00620) (0.00525) (0.00524)

log(gdp) 0.364∗∗∗ 0.384∗∗∗ 0.388∗∗∗ 0.343∗∗∗ 0.345∗∗∗

(0.0737) (0.0752) (0.0759) (0.0756) (0.0763)

log(ei) 0.226∗∗∗ 0.220∗∗∗ 0.224∗∗∗ 0.231∗∗∗ 0.236∗∗∗

(0.0423) (0.0412) (0.0418) (0.0430) (0.0435)

diesel -0.756∗∗∗ -0.770∗∗∗ -0.782∗∗∗ -0.767∗∗∗ -0.779∗∗∗

(0.0885) (0.0933) (0.0898) (0.0895) (0.0863)

super 0.288∗ 0.274∗ 0.286∗ 0.284∗ 0.297∗∗

(0.111) (0.114) (0.112) (0.112) (0.109)

log(frt) 0.0158 0.0165

(0.00979) (0.00945)

Obs 816 816 816 816 816

N 136 136 136 136 136

T 6 6 6 6 6

Note: Size Standard errors in parentheses. Dependent variable is log(co2cap).

* p < 0.1, ** p < 0.05, *** p < 0.01

33



Table D.2: Pre- and post-treatment averages of relative fuel prices for Luxembourg

Diesel Petrol

Pre-Avg Post-Avg Pre-Avg Post-Avg

BE 0.8010 0.8186 0.8765 0.9065

DE 0.8575 0.8794 0.8448 0.8401

FR 0.7892 0.7844 0.8253 0.7965

Note: Relative fuel prices of LU with respect to its neighboring countries. Pre-Avg are relative fuel

prices based on time-weighted pre-treatment fuel prices, where time weights are taken from the SDiD

main specification. Post-Avg are relative fuel prices based on post-treatment fuel prices.

Figure D.4: Absolute and relative fuel prices for LU and neighbouring countries
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Note: Bars show fuel prices in Eurocents per 1,000 litres adjusted for inflation (HICP). Lines indicate

fuel prices of Luxembourg relative to its neighbouring countries over time.
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Le Ministre du Développement durable et des Infrastructures. (2017). Loi du 14 juillet
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