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Abstract

In March 2020, Luxembourg became the first country in the world to offer free public

transport across all modes of transport. We leverage this unique quasi-experimental set-

ting to evaluate whether Luxembourg’s free public transport policy has induced a shift

from private motorized transport to free public transport. To assess this shift, we mea-

sure the reduction in carbon emissions from road transport as an indicator of reduced

dependence on private motorized vehicles. We use spatial panel data from the European

Emission Database on Global Atmospheric Research (EDGAR) and utilize the recently

proposed Synthetic Difference-in-Differences method that combines the advantages of

the canonical Difference-in-Difference and Synthetic Control approaches. The study es-

timates a 6.5% reduction in road transport emissions as a result of the policy, indicating

a significant modal shift from private vehicles to public transport. We carefully consider

Luxembourg’s distinctive characteristics and account for the concurrent COVID-19 pan-

demic to address potential challenges associated with identification. In particular, we

control for confounding factors such as COVID-related restrictions and fuel prices as well

as changes in commuting and working-from-home. Event study analyses and sensitivity

checks indicate the overall robustness of our results.

Keywords: Transportation, Emissions, Public Transport, Synthetic DiD
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1 Introduction

The transport sector is a significant source of greenhouse gas (GHG) emissions. In 2019, it

is estimated to be responsible for almost 15% of global net anthropogenic GHG emissions

(IPCC, 2022). About a quarter of the European Unions (EU) GHG emissions in 2019

came from the transport sector, of which road transport accounted for about 72% (EEA,

2022). Moreover, GHG emissions from the EU transport sector increased by about 33.5%

from 1990 to 2019 (EEA, 2022). This stands in contrast to all other sectors, which

experienced a decrease in emissions over the same period (Crippa, Guizzardi, Banja,

et al., 2022). Therefore, reducing emissions from the transport sector is imperative to

mitigate the negative impacts of climate change and limit further warming of the planet.

Additionally, reducing transport sector emissions is critical for the EU to achieve its goal

of climate neutrality by 2050 (EEA, 2022).

The provision of affordable and efficient public transport is often discussed as an effec-

tive way of reducing carbon (CO2) emissions from the transport sector (Federal Transit

Administration, 2010; International Transport Forum, 2020). Accessible, affordable, and

efficient public transport can encourage a shift from private motorized transport to the

more environmentally friendly public transport. Such shifts can help reduce emissions

from the transport sector. In March 2020, Luxembourg became the first country in the

world to offer free public transport on all modes of transport (buses, trains, and trams)

throughout the country (Research Luxembourg, 2021). This policy initiative created a

unique quasi-experiment to examine the effectiveness of free public transport in curtailing

emissions in the transport sector. Our paper exploits this quasi-experimental setting cre-

ated by this policy intervention to quantify its effect on CO2 emissions in Luxembourg’s

road transport sector.

Our paper links to a large body of literature that ex-post evaluates transport policies

designed to decrease reliance on motorized vehicles. Policies aimed at mitigating trans-

port emissions can be categorized into three main strategies. The first category examines

policies intended to directly reduce or restrict the use of motor vehicles by making driv-

ing more costly or less convenient. These include initiatives such as low-emission zones

(Sarmiento et al., 2023; Wolff, 2014), driving restrictions (Davis, 2008, 2017; Gallego et

al., 2013), and tax-based instruments (Andersson, 2019; Pretis, 2022). The second cate-

gory includes policies encouraging a shift towards more sustainable modes of transport,
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in particular by subsidizing public transport systems (Aydin & Kürschner Rauck, 2023;

Borsati et al., 2023; Gohl & Schrauth, 2024) or improving public transit infrastructure

(Chen & Whalley, 2012; Gendron-Carrier et al., 2022; Lalive et al., 2018; Li et al., 2019).

Policies in the third category aim to improve the energy and fuel efficiency of vehicles

through regulations such as gasoline content standards (Auffhammer & Kellogg, 2011).

While most studies focus on individual policies, some jointly examine multiple interven-

tions (Eibinger et al., 2024; Koch et al., 2022; Kuss & Nicholas, 2022; Winkler et al.,

2023).

Literature on public transport provision and improvements is particularly relevant

for the context of this contribution. Research examining the impact of enhancing public

transportation generally reports a decrease in air pollution. Li et al. (2019) assess the

effect of subway expansion on air quality in China, while Lalive et al. (2018) investigate

the impact of increased regional rail service in Germany. Additionally, Chen and Whalley

(2012) explore the consequences of introducing a new rail transit system in Taipei. All

these studies conclude that such policies lead to an improvement in air quality, effectively

reducing air pollution. Gendron-Carrier et al. (2022) examine the effect of opening subway

systems on air pollution in 58 cities, and despite observing no average effect, they identify

a decrease in air pollution specifically in cities that initially had higher levels of pollution.

Studies investigating the effects of fare decreases generally report a decrease in air

pollution. For instance, research by Aydin and Kürschner Rauck (2023) and Gohl and

Schrauth (2024) examine the impact of the 9-Euro ticket introduced in Germany in 2022

on air quality. Both studies observed a decline in air pollution following the introduction

of the 9-euro ticket, with more significant reductions noted in regions well-served by public

transit systems. In contrast, Borsati et al. (2023) investigate the effects of a four-month

public transport subsidy implemented in Spain in 2022 but finds no significant evidence

of improved air quality.

However, literature on the effects of free public transport is still scarce. We know of

only a few studies on the effects of free public transport within cities. Tallin (Estonia)

introduced free public transit in 2013. Descriptive work by Cats et al. (2017) found that

this policy lead to an increase in public transport usage, but had no significant effect

on car usage. Bull et al. (2021) randomly assigned free public transport vouchers to

workers in Santiago (Chile). These were mainly used during off-peak hours, suggesting
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an increase in the use of public transport for leisure activities rather than a reduction in

car use. Tomeš et al. (2022) study two massive long-distance fare discount schemes for

children, students, and pensioners in Slovakia and Czechia. The former introduced free

railway fares for these groups from 2014 on, while the latter introduced a 75% discount

for trains and busses from 2018 on. They found a significant increase in public transport

usage for these groups, but do not discuss changes in car usage.

Our study contributes to the existing literature by analyzing the causal impact of

Luxembourg’s free public transport policy, launched in March 2020, on the country’s

road transport CO2 emissions. Luxembourg’s position as the first country in the world

to implement this policy provides a unique experimental context. The existence of a large

number of countries and regions without free public transport provides an opportunity

to construct a counterfactual scenario. This scenario would represent a suitable compar-

ison for the trajectory of Luxembourg’s road transport CO2 emissions if the policy had

not been implemented. This allows us to evaluate the causal impact of this policy on

road transport CO2 emissions. To the best of our knowledge, our study is the first to

empirically assess the direct causal effect of free public transportation on CO2 emissions.

The results of our study thus provide a unique and significant contribution to the body

of evidence regarding the efficacy of public transportation as a strategy to tackle climate

change.

We use the recently proposed SDID method and construct a counterfactual CO2

emission trajectory for Luxembourg from a pool of donor regions consisting of all other

European countries at the Nomenclature for Territorial Units for Statistics (NUTS) 2

regional level. We conduct our analysis at the NUTS 2 level, as Luxembourg itself

constitutes a NUTS 2 region. Moreover, Luxembourg is quite different to other European

countries in economic terms and NUTS 2 regions can offer a more suitable comparison

to Luxembourg in terms of their emission trajectories compared to entire countries. We

further include covariates to control for the potential confounding effects arising from the

COVID-19 pandemic, the resulting changes in commuting, working-from-home patterns,

and changes in fuel prices that could also affect road transport CO2 emissions.

We estimate that the free public transport policy in Luxembourg led to an estimated

average treatment effect (ATT) of around 6.5% reduction in CO2 emissions from the

road transport sector. To the best of our knowledge, there is only one other study that
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directly looks at Luxembourg free public transportation policy. Bigi et al. (2023) use

an agent-based modelling approach to show that the policy significantly contributed to

a modal shift from private vehicles to public transport, but that it did not significantly

impact congestion levels. Our results are in line with their findings and appear robust

across different specifications.

The rest of the paper is organized as follows. Section 2 briefly introduces Luxem-

bourg’s free public transit policy. Data and the identification strategy are discussed in

Section 3. The empirical strategy, including the SDID procedure, is detailed in Section 4.

Section 5 provides our empirical results and robustness tests. The results and potential

mechanisms are discussed in Section 6. Finally, Section 7 provides concluding remarks.

2 The policy

On March 1, 2020, Luxembourg became the first country in the world to offer free public

transport nationwide, available to all residents and visitors.1 This initiative was part

of the broader mobility strategy, ”Modu.2.0” aimed at improving the sustainability of

the mobility system (Ministère du Développement Durable et des Infrastructures, 2018).

With the highest car density in Europe and facing significant congestion problems, Lux-

embourg designed this policy not only to alleviate traffic but also to support social equity

by making travel more accessible for low-income earners. The initiative thus underscores

a commitment to sustainable mobility and inclusivity. Before the implementation of this

policy annual revenue for ticket sales in Luxembourg amounted to about 41 million eu-

ros, which was approximately 8% of the annual cost of maintaining the transport system.

Financing for the free public transit policy now comes from taxpayers.

The existing public transportation infrastructure comprises buses, trams, and trains.

It forms the backbone of this initiative and provides wide accessibility and efficient service

across the country. Buses are the predominant mode of public transportation in Luxem-

bourg, offering comprehensive coverage across the entire country. These connect different

localities as well as cross-border lines (Ministère du Développement Durable et des In-

frastructures, 2020). Altogether about 400 bus lines are running through Luxembourg,

connecting the entire country (Administration des transports publics, 2024). The city of

1Tickets are only required for 1st class travel
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Luxembourg is additionally served by the only tram line in the country, covering around

10km through 17 stations (Département de la mobilité et des transports, 2024). Trains

additionally cover the country in a star-like network, with its center in Luxembourg city

(Département de la mobilité et des transports, 2020).

It is worth noting that the free public transit policy was complemented by enhance-

ments in the transportation infrastructure, notably through the strategic expansion of the

national rail network’s capacity. In 2017, Luxembourg introduced a tram line traversing

Luxembourg City, initially connecting 8 stations. The following year saw the line’s expan-

sion, adding 3 more stops. December 2020 marked another significant extension, enlarging

the network by 2 kilometers and incorporating 4 additional stations. By September 2022,

the tram network further expanded with the addition of 2 new stations. The latter two

expansions took place after the free public transportation policy was introduced. Cur-

rently, the tram stretches over 10 kilometers, serving 17 stations, and includes 6 major

interchanges (Département de la mobilité et des transports, 2024). Luxembourg plans to

further introduce 3 more tramlines by the end of 2035 (Luxtoday, 2022).

With a substantial number of cross-border commuters, Luxembourg has focused on

improving parking availability, particularly near border areas. Additionally, through

negotiations with neighboring transport networks, fares for cross-border transport have

been lowered (Ministry of Mobility and Public Works, 2020). As a result, the new scheme

is designed to benefit not only residents but also those commuting from neighboring

countries. The strategic objective for 2025 is to reduce congestion during peak hours

while transporting 20% more people than in 2017.

3 Data and identification

Causal policy evaluation studies face a fundamental problem that arises from the inabil-

ity to directly observe potential outcomes of a specific unit both in the presence and the

absence of a policy event (treatment). This makes it difficult to establish causal relation-

ships, as it is not possible to observe the treated unit in its untreated state following a

policy intervention. In the case of Luxembourg, this translates to “what would the CO2

emissions from the road transport sector have been if the free public transport policy was

not introduced?” To overcome this problem, it is necessary to identify an appropriate
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identification strategy that allows the construction of a credible comparison group that

can be used as a counterfactual for Luxembourg after the introduction of the policy.

In our specific setting, we face two main challenges when selecting an appropriate

identification strategy. First, Luxembourg differs from other European countries in many

ways. It is a small country, measuring around 2,586 km2. In the NUTS statistical

region, it is a single region at all levels. Its population is also relatively small at around

660,000. Conversely, GDP per capita at around 140,000 USD is also highest among all

EU countries. Moreover, CO2 emissions from transport per capita are highest among all

EU member states at around 8,200 kg. Luxembourg has the highest car density within

the EU at around 700 cars per 1,000 inhabitants. To identify the effect of free public

transport, we want to compare the evolution of transport emissions with comparable

regions in terms of their emission trajectories. The uniqueness of Luxembourg therefore

makes it difficult to find a suitable counterfactual. It would be difficult to meet the parallel

trend assumption necessary to conduct a difference-in-difference (DID) estimation, as it is

extremely difficult to find a comparable unit based on both observable and unobservable

characteristics. This could be compensated for by synthetic control (SC) approaches,

which reweigh units to adjust for pre-treatment trends (Abadie, 2021). However, this

approach also faces difficulties due to the lack of directly comparable regions (not only

in their trajectories but in absolute levels) to include in the donor pool to create the

synthetic counterfactual, for the reasons discussed above.

To overcome the first challenge, we employ a recently proposed estimation proce-

dure, the SDID approach introduced by Arkhangelsky et al. (2021). SDID combines

the strengths of both Difference-in-Differences (DID) and Synthetic control (SC) meth-

ods. SDID circumvents the common drawbacks associated with traditional DID and SC

methods. Specifically, it overcomes the challenge of estimating causal relationships when

parallel trends are not observed in aggregate data for DID and eliminates the necessity

for the treated unit to be within the ”convex hull” of control units for SC. Furthermore,

given the size of Luxembourg, we carry out the SDID analysis at the NUTS2 regional

level to find more comparable control regions. This will be discussed in more detail in

Section 4.

Identification is further threatened by variations in mobility patterns unrelated to

the free-public-transport policy. Potential confounding includes variation related to the
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COVID-19 pandemic, including policy responses to the pandemic, changes in working

from home, and changes in commuting. We account for these potential confounders by

including covariates to control for these confounding effects in the SDID estimation, which

is discussed in more detail in Section 4. In this section, we further discuss in detail and

provide descriptive statistics of the evolution of transport-related CO2 emissions as well

as potential confounders. A detailed description of all variables that we use for analyses

is given in Table A.1.

Finally, to avoid bad comparisons with already treated units, we exclude regions from

our sample that implemented policies that substantially reduced costs and/or increased

accessibility of public transport usage in our sample period. We drop Austria and Estonia

from our sample. Estonia introduced free public transport in Tallin in 2013 and extended

it since. Given that Estonia is in itself a NUTS 2 region, therefore we drop the whole

country. Austria introduced a nationwide climate ticket for all public transport modes in

2021. This increased accessibility and significantly reduced prices for comparable tickets

prior to the policy introduction. We also exclude other regions that introduced free or

subsidized public transport during the sample period. These regions include Cascais in

Portugal, Torrevieja in Spain, Livingo in Italy, Attica in Greece, and Calais, Dunkirk,

Nantes, Strasbourg, and Paris in France.

3.1 Road transport CO2 emissions

Road transport CO2 emissions are extracted from the European Emission Database for

Global Atmospheric Research (EDGAR) v8 (Crippa, Guizzardi, Solazzo, et al., 2022).

Road transport emissions are categorized as IPCC-1996 sector category 1.A.3.b. Emis-

sions are calculated as the product of fuel consumption times the associated IPCC emis-

sion factors. The EDGAR database provides annual sector-specific grid maps expressed in

ton substance with a spatial resolution of 0.1 degrees × 0.1 degrees. We aggregate these

grid-cells to the corresponding NUTS 2 regions for the following 32 countries located

in Europe: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark,

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,

Liechtenstein, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,

Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, and United Kingdom. The

NUTS 2 regional borders are extracted from the Eurostat database (European Commis-
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sion, 2022).

We present the spatial road transport CO2 emissions for Luxembourg from 2014-2022

in Figure 1.2 High emissions are indicated in red and lower emissions in yellow. Emissions

are concentrated around Luxembourg city and border regions with France. The impact

of COVID-19 can be seen in a drop in emissions from 2019 to 2020. Emissions in 2021

and 2022 stay consistently below pre-pandemic values. The reduction in CO2 emissions

is directly related to a reduction in fuel consumption, i.e., a shift in mobility patterns.

This shift may be attributed to various factors. We are interested in the effect of free

public transport, which is one potential source. Another likely source for the variation in

CO2 emissions is an increase in working from home and fewer commuting trips.

Figure 1: CO2 emissions from road transport for Luxembourg, 2014-2022
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Note: Road transport CO2 emissions are extracted from the European Emission Database for Global
Atmospheric Research (EDGAR) v8. Grid cells are 0.1x0.1 degrees. Emissions are expressed in ton
substance.

3.2 COVID-19 cases

The COVID-19 pandemic is a potential source of variation in mobility patterns unrelated

to the free-public-transport policy in Luxembourg. A higher number of COVID-19 cases

2Grid-cells that intersect with the NUTS2 boundaries of Luxembourg are allocated according to their
fraction that falls inside these boundaries.
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may, for example, lead to a shift in remote working, online education, and consumer

behavior. Additionally, policy responses to the pandemic are potentially influenced by the

number of cases and regional mobility restrictions may thus correlated with the number

of cases. To accommodate such factors, we explore regional data on daily COVID-19

cases across countries.

Data on confirmed COVID-19 cases are collected and reported by Naqvi (2021) up to

the NUTS3 level. Information on the number of confirmed cases is taken at a country

level from each country’s official institutions responsible for providing COVID-related

data. The regional data is then aggregated up to the country level and cross-checked

against data from Our Wold in Data (OWID), which provides confirmed COVID-19 cases

at the country level (Mathieu et al., 2020). The data matches well for 2020 and 2021.

Data quality, however, deteriorates in 2022, because the number of countries regularly

reporting cases decreases strongly in 2022. Naqvi (2021) reports cases for all regions that

we consider in our study, except for Luxembourg. However, since the regional data is

validated against the OWID data and matches well for our sample-period, we resort to

COVID-19 cases from OWID for Luxembourg.

Figure 2 shows the regional variation in the number of confirmed daily COVID-19

cases per 10,000 population for 2020 and 2021. Dots represent the mean of confirmed

cases at the NUTS0 level (i.e., country level), the downward-facing triangle represents the

NUTS2 region with the lowest and the upward-facing triangle the region with the highest

number of confirmed cases per 10,000 persons within a country. The distance between

these two points spans the spatial variation across NUTS2 regions within a country. It

is evident that this spatial variation is significant, which further motivates the choice to

conduct our study at a regional level compared to the country level.

Overall, the number of cases per 10,000 persons as well as their spatial variation is

smaller in 2020 compared to 2021. Countries with a larger population also tend to show

a bigger variation in cases across their regions. Luxembourg does not show any regional

variation because its NUTS0 and NUTS2 regional boundaries are identical. Daily cases

per 10,000 persons for Luxembourg in 2020 and 2021 are around 600 and 900, respectively.

In 2020, this puts Luxembourg at the higher end of the spectrum of regional cases per

10,000 persons, while it puts it on the lower end in 2021.
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Figure 2: Regional variation in COVID-19 cases for 2020 and 2021
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Note: Confirmed COVID-19 cases and their spatial distribution across countries for 2020 and 2021.
Data for Luxembourg is from Our Wold in Data (OWID), while data for NUTS2 regions in other
countries is taken from Naqvi (2021).

3.3 Working from home and commuting

A main threat to identification are people who changed their mobility pattern with re-

spect to work. This includes persons that did not work at home prior to the pandemic,

but started and continued working from home since the COVID-19 outbreak. As a

consequence, mobility patterns within a country as well as commuting patterns across

countries might have changed. This is problematic for identification when such changes

are very different in Luxembourg compared to other regions. Luxembourg experiences

a large inflow of commuters relative to their workforce. Around 200,000 persons com-

mute to Luxembourg across the border, which relates to around 44% of its labor force

in 2020 (Luxembourg.lu, 2024). Cross-border commuters work in Luxembourg but their

residence is located in France, Belgium, or Germany. To study changes in this behavior,

we draw on data on working from home and commuting inflow.

Data on working from home is obtained from a special extraction from the EU La-

bor Force Survey (EU-LFS) for the period 2016-2021. A person is classified as usually

working from when they were working at home half of the days that they worked in a
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reference period of four weeks preceding the end of the reference week in the survey. We

focus on persons usually working at home with their workplace location in the associated

NUTS2 region and their location of residence within the same country.3 However, this

dataset does not capture commuting patterns across regions, which seems particularly

important for Luxembourg, which traditionally experiences a large commuting inflow.

To get a more complete picture of changes in mobility behavior with respect to work,

we consider persons never working from home at a regional level. This category cap-

tures all persons commuting to work irrespective of their location of residence and thus

incorporates commuting inflow from other regions and countries.

Figure 3: Change (%) in persons usually working from home for NUTS2 regions

(a) 2019-2020
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−300 −240 −180 −120 −60 0 60 120 180 240 300

(b) 2020-2021
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−300 −240 −180 −120 −60 0 60 120 180 240 300

Note: Data is from a special extraction from the EU-LFS. Persons never working from home with
workplace at the NUTS2 region shown in the figure and their location of residence in the associated
country of the region.

Figure 3 shows yearly changes of persons usually working from home for NUTS2

regions. Figure 3a shows the change from 2019-2020, i.e., the immediate effect of the

pandemic. Blue indicates an increase in working from home, whereas red indicates a

decrease. As expected, almost all regions experienced an increase in people working from

home. The figure zooms in on Luxembourg, which also experienced an increase, but notice

3Ideally, we would want to focus on persons working and living in the same NUTS2 region. However,
this would severely limit the data size and is not available from an EU-LFS data structure.
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Figure 4: Change (%) of persons never working from home for NUTS2 regions

(a) 2019-2020
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Note: Data is from a special extraction from the EU-LFS. The figure shows yearly changes of persons
never working at home for NUTS2 regions which are the location of the workplace of these persons
irrespective of their location of residence.

that the change is not particularly strong relative to other regions, i.e., Luxembourg is

not an outlier. In Luxembourg, the change of people usually working from home from

2019-2020 almost doubled at around +98%. Figure 3b shows the change from 2020-2021.

The map now shows a more nuanced picture. Some regions experienced a decrease in

working from home, while some experienced another increase. Luxembourg is among the

latter group and experienced a change of around +28%.

Figure 4 shows yearly changes of persons never working at home for NUTS2 regions.

Figure 4a shows percentage changes from 2020 to 2021. Overall, the map shows a decrease

in persons never working from home. This is to be expected since the pandemic caused

an increase in working from home in most regions. Figure 4b shows percentage changes

from 2020-2021 and shows a mixed picture. Some regions experienced a further decrease

in working from home, while other experienced an increase following the first year of

the pandemic. Luxembourg experienced a decrease in 2019-2020 and 2020-2021 of −12%

and −10%, respectively. Again, Luxembourg does not appear to have experienced a

particularly strong change relative to other countries.

Both changes in working from home within a region depicted in Figure 3 as well
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as in never working from home, i.e., commuting inflow, shown in Figure 4 indicate that

Luxembourg did not experience particularly strong changes relative to other regions. This

mitigates the associated threat to identification. It is nonetheless essential to control for

these changes in the empirical analysis. In doing so, we note that the two measures are

likely to share a substantial amount of similar information. If the share of people usually

working from home increases, it seems likely that the number of persons never working

from home decreases. The most significant differences between the measures is that the

latter captures changes in commuting inflow from other regions to Luxembourg. We will

therefore analyse the impact of these two measurements in the Section 5.1 separately.

4 Empirical strategy

In this section, we provide a brief outline of the synthetic difference-in-differences (SDID)

methodology. We compare it to standard difference-in-differences (DID) and standard

synthetic control (SC) methods. Then, we go on to explain how covariates are handled in

this approach, which is an important aspect of our analysis. Finally, we discuss inference

and the extension to an event-study type analysis.

4.1 Synthetic difference-in-differences (SDID)

We use the SDID methodology to assess the impact of Luxembourg’s free public transport

policy on CO2 emissions from road transport. The analysis covers a sample period from

2016 to 2021. As the policy is implemented in 2020, the analysis includes four years before

the policy is introduced and two years after, which allows for a comparative analysis of

the pre-and post-policy effects.

The SDID estimator aims to consistently estimate an average treatment effect on

the treated (ATT) without relying on parallel pre-treatment trends between treated and

every not-treated unit. The ATT is estimated by:

(
τ̂ sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2ω̂sdid

i λ̂sdid
t

}
, (1)

where the outcome of interest, Yit is observed for each unit i at each time t, with i =

1, ..., N and t = 1, ..., T . Wit indicates treatment, with Wit = 1 if unit i is treated at
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time t and Wit = 0 else. µ is an intercept, αi and βt are unit and time fixed-effects,

respectively. ω̂sdid
i and λ̂sdid

t are unit and time weights, respectively.

Unit weights are computed to align pre-treatments trends between treated and control

units:

(
ω̂0, ω̂

sdid
)
= argmin

ω0∈R,ω∈Ω

Tpre∑
t=1

(
ω0 +

Nco∑
i=1

ωiYit −
1

Ntr

N∑
i=Nco+1

Yit

)2

+ ζ2Tpre||ω||22, (2)

with Ω = {ω ∈ RN
+ , with

∑Nco

i=1 ωi = 1 and ωi = 1/Ntr ∀ i = Nco+1, ..., N}, where ||ω||2 is

the Euclidian norm and R+ denotes the positive real line. Nco and Ntr are the number of

untreated and treated units, respectively. Similarly, Tpre is the number of pre-treatment

periods. ζ is a regularization parameter to increase dispersion and ensure unique weights,

it is defined in Arkhangelsky et al. (2021). Contrary to traditional synthetic control unit

weights, these SDiD weights do not aim to find comparable regions in absolute terms

conditional on covariates, but rather assigns weights to align pre-treatment trends in the

(adjusted) outcome.

Time weights are computed to align pre- and post-treatment periods for untreated

units:

(
λ̂0, λ̂

sdid
)
= argmin

λ0∈R,λ∈Λ

Nco∑
i=1

λ0 +

Tpre∑
t=1

λtYit −
1

Tpost

T∑
t=Tpre+1

Yit

2

+ ζ2Nco||λ||2, (3)

with Λ = {λ ∈ RT
+, with

∑Tpre

t=1 λt = 1 and λt = 1/Tpost ∀ t = Tpre + 1, ..., T}, where the

regularization term ensures unique weights and is very small.

In essence, SDiD estimates the ATT, τ̂ sdid, from a weighted two-way fixed-effects

regression. Compared to SDID, standard difference-in-differences (DID) approaches use

an unweighted two-way fixed-effects regression, thus relying on parrallel pre-treatment

trends in aggregate data. Synthetic control (SC) relaxes this requirement but uses only

unit-specific weights and does not explicitly weigh time periods optimally. Contrary to SC

method, SDiD additionally allows for level differences between treatment and synthetic

control units in estimating optimal weights. Following this rationale, Arkhangelsky et al.

(2021) argue that SDiD is more flexible compared to DiD and SC methods.
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4.2 Handling covariates

We then follow the procedure for handling covariates outlined in Arkhangelsky et al.

(2021) and refined in Clarke et al. (2023). In contrast to SC approaches that find optimal

unit weights by balancing observed covariates across treated and control units, SDID

uses a latent factor model and balances unobserved factors to find weights and achieve

consistency. Handling covariates in this setting is treated as a pre-modeling approach, in

which the outcome variable is adjusted by covariates before estimation. The procedure

does not put any stationarity requirements on the covariates, i.e., they can be time-

varying. This adjustment procedure contains two steps. In the first step, we estimate

the coefficients of the covariates. To obtain estimates that are unconfounded by the

treatment itself, we follow Kranz (2022) and exclude the treated unit from estimation.

We run the following model:

Y co
it = αi + γt +Xco

it β + uit, (4)

where the super-script co indicates control units, Y co
it measures CO2 emissions from road

transport, Xco
it collects covariates and may include Covid-related effects (i.e. the Covid

stringency index and Covid cases), the number of commuters, and the share of employed

persons usually working from home, fuel prices, freight transportation, GDP per capita,

and population. To capture differences between regions and time, we can include region-

specific effects, αi, and time-specific effects, γt. In a second step, we adjust the outcome

variable for the aforementioned effects for all units:

Ŷ adj
it = Yit −Xitβ̂. (5)

Finally, the SDID procedure can then be applied to the adjusted outcome variable.

4.3 Placebo inference and event-study analysis

Arkhangelsky et al. (2021) show that the estimated ATT, τ̂ sdid, is asymptotically nor-

mal. This means that conventional confidence intervals can be used to conduct asymp-

totically valid inference if the asymptotic variance, V̂τ , can be consistently estimated:

τ ∈ τ̂ sdid ± zα/2

√
V̂τ . Arkhangelsky et al. (2021) propose several estimators for the
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asymptotic variance (bootstrap, jackknife, placebo). But in cases where there is only

one treated unit (i.e., Ntr = 1), only placebo estimates are well defined. The idea of

this procedure is to replace the exposed unit with unexposed units, then randomly assign

those units to a placebo treatment and compute a placebo ATT. This is repeated many

times to obtain a vector of placebo ATTs. The variance of this vector can then be used

to obtain an estimate for the asymptotic variance.

To evaluate the robustness of the results, we perform an event-study analyses, which

enable us to study the dynamics of the policy effect and allow us to evaluate the credibility

of pre-treatment parallel trends. We follow the discussion in Clarke et al. (2023) on how

to compute these estimates manually. In principle, we want to estimate the differences

in the outcome variable between treated and the non-treated synthetic control region for

each time period t. This allows us to evaluate parallel pre-treatment trends by studying

whether these differences changed over time prior to the policy adoption. Additionally,

we can study the evolution of the treatment over each post-treatment period.

The difference at each time period t is given by:

(Ȳ 1
t − Ȳ 0

t )− (Ȳ 1
base − Ȳ 0

base), (6)

where 1 indicates a treated unit and 0 the non-treated synthetic control unit. The first

term in brackets calculates the difference in mean CO2 emissions at time period t for

treated and control unit. The second term in brackets captures the difference between

the pre-treatment baseline means of these units. The baseline outcomes are weighted

aggregates over pre-treatment periods rather than arbitrarily chosen time periods (as

is usually done in DID applications). Confidence bands around these estimates can

be generated with a placebo-based approach as follows. 1) exclude treated units (i.e.,

Luxembourg) from the sample, 2) randomly assign treatment to a region, 3) compute

the ATT for this placebo treatment. This procedure can be done many times and we

can then draw from the distribution of the results to create confidence bands around the

quantity estimated by (6) for each time period t.
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5 Results and Robustness

This section reports our main results as well as several robustness checks. We study

several model specifications, which are outlined in Section 5.1. These include models

without any covariates, with COVID-related covariates, and one with a set of additional

controls. Section 5.2 tests the robustness of the main results. These checks include

specifications that exclude statistically insignificant controls from the main specification

as well as results from standard diff-in-diff procedures. We find that our results are robust

against these checks.

5.1 Results

We provide results for three different model specifications. The first one does not adjust

emissions for covariates; it is based on Equation (1), where Yit is the log of per capita CO2

emissions from road transport. The second specification adjusts the outcome variable for

COVID-related variables as described in Section 4.2. The auxiliary regression is given

by:

log(CO2/cap)coit =αi + γt + β1asinh(cases)
co
it + β2asinh(nvrwfh)

co
it+ (7)

β3rwfh
co
it + uit,

where the outcome variable is log of road-transport CO2 emission per capita. It is

regressed on the inverse hyperbolic sine (asinh) of Covid cases, rwfh, people usually

working from over working population, and nvrwfh, the asinh of people working in

Luxembourg and never working from home. We use the inverse hyperbolic sine trans-

formation on covariates that include zero-values because the natural logarithm of zero is

undefined and the transformation approaches the natural log.4 The third specification is

our main specification and adjusts the outcome variable for additional covariates based

4The interpretation of the coefficients of the covariates as elasticities in these cases is sensitive to
the size of the untransformed average value of the covariates. As suggested by Bellemare and Wichman
(2020), we multiply these covariates by a constant to generate average values greater than 10, which
provides stable elasticities. The reported coefficients appear to be robust in our specifications.
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on:

log(CO2/cap)coit =αi + γt + β1asinh(cases)
co
it + β2asinh(nvrwfh)

co
it + β3rwfh

co
it+ (8)

β4log(gdp)
co
it + β5log(ei)

co
it + β6log(diesel)

co
it + β7log(petrol)

co
it+

β8log(frt)
co
it + uit.

The set of covariates that we consider in this specification additionally includes: log of

real gdp per capita, energy intensity, ei, measured as average CO2 emissions of newly

registered vehicles, real diesel and petrol prices, and freight transport measured as tonnes

of goods loaded in Luxembourg. Estimation results for the auxiliary regression based on

Specification (8) are shown in Table B.1 in Appendix B.

We provide results for the ATT for the period that the treatment is in effect, i.e., 2020-

2021, as well as an event-study analysis over the period 2016-2021 in Figure 5 for different

specifications. Results for the ATTs are shown in Figure 5a and the event-study estimates

are shown in Figure 5b. Estimates are based on the following model specifications that

differentiate in the way they adjust the outcome variable. 1) not adjusting for covariates

- no covariates, 2) adjusting only for Covid-related effects - only COVID covariates, and

3) adjusting for the full set of covariates - all covariates. The control units that contribute

to the synthetic control together with their respective weights for the third specification

are graphically shown in Figure C.1 in Appendix C. The regions with the largest weights

come from Belgium, Hungary, Italy, Netherlands, and Poland. Regions from Denmark,

Germany, Finland, and Spain enter the synthetic control with smaller weights.

Table C.1 in Appendix C shows the NUTS2 regional code and the name of the region

together with the specific unit weights assigned to them. Additionally, the table gives

realizations of pre-treatment control variables for 2019. These values are quite heteroge-

neous across controls as well as compared to Luxembourg. This highlights the difference

in SDiD compared to SC. While the latter tries to match the treated unit to a synthetic

control in absolute levels, the former assigns weights to align pre-treatment trends. These

trends do not necessitate that the magnitude of controls match well but rather focuses

on their trajectories before treatment.

Figure C.2 in Appendix C shows the evolution of pre-treatment trends for Luxembourg

(black) as well as different averages over different groups of control regions. These include
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the average pre-treatment trend in the adjusted outcome variable over all regions (green),

the unweighted average over regions that received a positive weight (orange), and the

weighted average across control regions according to the assigned SDiD unit weights

(blue). Figure C.2a shows the absolute level of trends, while Figure C.2b standardizes

the trends so that they are visually more easily comparable.

We can see from these normalized trends that pre-treatment trends for Luxembourg

and the average across all regions shows the biggest visual difference in trends. The

unweighted average across regions that received a positive weight is a much better fit.

The best fit seems to be between Luxembourg and the weighted average according to

the SDiD unit weights. This visual inspection affirms the notion that SDiD assigns unit

weights to create a synthetic control that more comparable to Luxembourg pre-treatment

compared to a simple average of NUTS2 regions.

Belgium, Denmark, Germany, Finland, and the Netherlands are among the EU coun-

tries with the highest GDP per capita and thus most comparable to Luxembourg in this

respect. While Poland and Italy have the highest motorization rate after Luxembourg.

It is therefore quite reasonable that the regions contributing to the synthetic control are

taken from these countries.

We noted that while Luxembourg experienced a decrease in commuters in the years

after the pandemic, the magnitude of these changes was not particularly strong relative to

other EU regions. This observation extends to the regions of the synthetic control. Most

of these experienced a decrease in the year immediately following the pandemic. Changes

in commuting from 2020-2021, however, are more diverse. Some regions experienced a

further drop in commuters (as did Luxembourg), while other saw an increase. Only

regions in the Netherlands saw a further strong decrease. The other regions show a

mixed picture with overall small changes in magnitude.

Overall, the regions constituting the synthetic control show a very similar pattern

in commuting changes from 2019-2020. From 2020-2021, most regions experienced only

small adjustments in commuting. We believe that this strengthens the credibility of our

results because Luxembourg did not experience a strong drop in commuters relative to

the synthetic control regions.

The estimated ATTs for the specification including all covariates indicate an effect at

around −0.65, i.e., a 6.5% reduction in transport CO2 emissions as a response to the free-
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Figure 5: ATTs and event study estimates of the estimated impact of free public
transport on road emissions (CO2) per capita in Luxembourg for different model
specifications with 95% confidence bands based on placebo estimates
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public transport policy implemented in March 2020. This is slightly less in magnitude

compared to controlling only for Covid cases, which yields an estimated ATT of around

−8%. The specification with no covariates provides the lowest estimated ATT at almost
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−15%. All estimates are statistically significant at the 5% significance level. The event-

study analysis shows no violation of parallel pre-treatment trends for all specifications.

Post-treatment effects show statistical significance in 2020 for all three specifications. In

2021, the confidence intervals based on the specifications that adjust the outcome variable

slightly cross the dashed zero-line at the 5-% significance level.

5.2 Robustness Tests

We have so far studied the three specifications shown in Figure 5, where the main spec-

ification is the one including all covariates. We now want to examine the sensitivity of

our main results to alternative model specifications. From Table B.1, we can see that the

coefficients for rwfh (the ratio of people working from home over the working population)

and log(frt) (log of freight transport) are statistically insignificant. Following this obser-

vation, we estimate the following specifications, all of which exclude some combination of

these coefficients from the adjustment of the outcome variable. Specifically, we estimate:

a model excluding controls for freight transport (Spec 1), a model omitting controls for

working from home (Spec 2), and a model that excludes both of these covariates (Spec

3). The results of the sensitivity analyses are displayed in Figure D.1 and Table D.1. All

three alternative specifications show similar estimates to our main specification including

all covariates.

The statistical insignificance of the rwfh coefficient may be explained by the fact

that the associated control may be highly correlated with the commuting control (i.e.,

people never working home). We therefore estimate a model that omits the control for

commuting (Spec 4). The estimated ATT is now slightly lower compared to our main

specification. This is to be expected, because we are not controlling for people commuting

to work across borders, as working from home is based on people working and living in

the same region. Finally, we estimate a model that includes all covariates but replaces

the commuting control with specific controls for cross-border commuting and commuting

within a region (Spec 5). The estimated ATT is again comparable to the one from our

main specification.

It is particularly encouraging to observe that the estimates derived from these 5

different model specifications are comparable in magnitude both to our main results and

to each other. This consistency underlines the robustness of our findings and confirms
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their reliability in the inclusion and exclusion of various controls. To further establish the

robustness of our results, we compare the three specifications from Figure 5 to standard

difference-in-differences (DID) techniques. The results are displayed in Figure E.1. The

results of this analysis are also consistent with our primary results and provide additional

validation of our main findings.

6 Discussion

We estimate the ATT of Luxembourg’s free public transport policy, introduced in 2020,

on road transport CO2 emissions to be approximately -6.5%. We hypothesize that this

observed reduction is due to a modal shift from private motorized transport to public

transport. In this section, we supplement our causal findings with descriptive data on

Luxembourg’s traffic volumes to provide further substance to our hypothesis.

We analyze traffic count data available on Luxembourg’s open data portal (Gouverne-

ment du Grand-Duché de Luxembourg, 2023). The data, compiled by the Administration

des Ponts et Chaussées (Luxembourg Bridges and Roads Administration), includes daily

traffic counts. These counts are measured by CCTV cameras placed at various points

on the roads. We aggregate the number of bi-directional car counts at each traffic post,

for each month, over the period 2017 to 2022 by canton. We only include traffic posts

that have no missing data for each month and each year during this period. Figure F.1

shows the total annual traffic volume by canton, while Figure F.1b presents the change

in total annual traffic volume by canton from 2017 to 2022. Examining the total annual

traffic volume, we observe a slight upward trend in traffic counts up to the year 2019 for

all cantons except for Mersch. As expected, there is a decline in 2020 across all cantons,

coinciding with the COVID-19 pandemic. The traffic counts for the years 2021 and 2022

are largely comparable to pre-pandemic levels, showing no increase. This is particularly

evident when examining Figure F.1b, which shows no particularly strong change in traffic

volume in 2021 and 2022 compared to pre-pandemic levels.

We next turn our attention to the traffic volumes recorded at six specific traffic posts

located at Luxembourg’s frontiers or borders. These include the Wemperhardt frontier,

bordering Belgium to the north; the Wormeldange frontier, bordering Germany to the

southeast; the Schengen frontier, bordering both Germany and France to the southeast;
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the Dudelange frontier, bordering France to the south; the Frisange frontier, also border-

ing France to the south; the Steinfort frontier, bordering Belgium to the west. Figure F.2b

illustrates the location of these posts and Figure F.2a shows the traffic count data. These

six specific posts were selected due to their complete daily and monthly data records from

2018 to 2022.

One of the primary concerns in our research design is the persistent impact of COVID-

19 on commuting patterns, which could have caused a reduction in CO2 emissions. We

control for these changes with working-from-home and commuting-inflow controls. The

sensitivity of our results depends on how well these controls can adjust for such changes.

This issue gains gravity with a bigger change in commuting patterns. Figure 4 already

indicates that this change was not particularly strong in Luxembourg compared to other

EU regions. The data underlying this finding is survey based. To add substance to

this claim, we study the evolution of real-world traffic counts. A significant decrease

in traffic volume at the border traffic posts could be an indication of a strong change

in commuting patterns. Figure F.2a shows a marked drop in traffic volume around the

COVID-19 outbreak, but a quick recovery afterwards. Overall, Figure F.2a indicates that

we cannot observe a substantial lasting decrease in traffic flows in Luxembourg’s frontier

regions from 2020 on.

We now want to discuss whether our estimated effect size is reasonable. Consider the

following back-of-the-envelop calculations. We estimate a reduction in CO2 emissions

from road transport of 6.5%. Following Bigi et al. (2023), let us assume a modal split for

private vehicles and public transport of around 80 and 15 percent, respectively. Further,

assume that the emission reduction is due to a modal change from private vehicles to

public transport. This then gives an estimated increase of public transport usage of

around 32%.

To assess credibility of this effect, we utilize public transport usage data for Luxem-

bourg. Specifically, we turn to data on the average daily number of people using trams on

weekdays from OECD (2023). In February 2020, this average tram usage was at around

31,000 persons. This increased to around 36,000 in February 2021 and to around 53,000

in February 2022. This amounts to an increase of around 15% and 32% from 2020-2021

and 2021-2022, respectively. These numbers are well in line with our estimates, suggest-

ing that they are reasonable. Additionally, we can relate these results to the LUXmobile
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survey, carried out by the Luxembourg City Council (Luxmobile, 2020). This survey

suggests that the free public transport policy has led to an increase in public transport

usage of around 30% in 2022, further adding credibility to our estimate.

7 Conclusion

We estimate the ATT of the free public transport policy introduced in Luxembourg

in 2020 to be around −0.065, controlling for all covariates. This implies a reduction

in CO2 emissions from road transport of around 6.5%. The results show considerable

stability across a range of model specifications that take into account factors related to

the COVID-19 pandemic, fuel prices, the prevalence of remote working, and commuting

patterns. Furthermore, our results are consistent with the descriptive evidence from traffic

volume data and the evidence from the LUXmobile survey, which indicates an increase

in public transport use as a result of the free public transport policy (Luxmobile, 2020).

The consistency of our results leads us to conclude that this is a statistically significant

causal effect, indicating a behavioral shift from private car use to public transport.

Our findings have a high policy relevance. The reduction in CO2 emissions from road

transport resulting from Luxembourg’s free public transport policy provides compelling

evidence of the effectiveness of such policies in contributing to climate change mitigation

efforts. This insight is particularly relevant for policymakers in urbanized, affluent areas

with well-developed public transport systems, similar to Luxembourg. As countries strive

to meet increasingly ambitious climate targets, the integration of free public transport

policies with other sustainable transport and urban planning initiatives could offer a

holistic solution to reducing CO2 emissions and fostering a sustainable future.

References

Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and method-

ological aspects. Journal of Economic Literature, 59 (2), 391–425.

Administration des transports publics. (2024). Régime Général des Transports Routiers
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vdl.lu/en/getting-around/notre-plan-de-mobilite-pour-demain/online-survey

Luxtoday. (2022). Luxembourg to have 4 tram lines by 2035 [Accessed: March 27, 2024].

Mathieu, E., Ritchie, H., Rodés-Guirao, L., Appel, C., Giattino, C., Hasell, J., Macdon-

ald, B., Dattani, S., Beltekian, D., Ortiz-Ospina, E., & Roser, M. (2020). Coron-

28

https://www.itf-oecd.org/sites/default/files/docs/decarbonising-transport-europe-way-forward.pdf
https://www.itf-oecd.org/sites/default/files/docs/decarbonising-transport-europe-way-forward.pdf
https://doi.org/10.1038/s41560-022-01095-6
https://github.com/skranz/xsynthdid/blob/main/paper/synthdid%20with%20covariates.pdf
https://github.com/skranz/xsynthdid/blob/main/paper/synthdid%20with%20covariates.pdf
https://doi.org/https://doi.org/10.1016/j.cstp.2022.02.001
https://doi.org/https://doi.org/10.1016/j.cstp.2022.02.001
https://www.vdl.lu/en/getting-around/notre-plan-de-mobilite-pour-demain/online-survey
https://www.vdl.lu/en/getting-around/notre-plan-de-mobilite-pour-demain/online-survey


avirus pandemic (covid-19) [https://ourworldindata.org/coronavirus]. Our World

in Data.
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Appendix A

Table A.1: Data description

Variable
(variable name)

Description Measurement Sources

CO2 emissions
log(co2)

CO2 emission from road
transport sector. IPCC-1996
sector category 1.A.3.b

log of CO2 per capita EDGARv8

GDP
log(gdp)

Regional GDP by NUTS 2
regions

log of million purchasing
power standard per inhab-
itant

Eurostat regional
statistics

covid cases
asinh(cases)

Daily number of new covid
19 cases aggregated to the
annual level, for each NUTS2
region

inverse hyperbolic sine of
number of cases

European region
tracker

commuters
asinh(nvrwfh)

Number of persons who never
worked from home in the
reference period of four weeks
preceding the end of the
reference week for all NUTS 2
region, which are the location
of the workplace irrespective
of the location of residence

inverse hyperbolic sine of
number of commuters

EU Labour Force
Survey

work from home
rwfh

Ratio of the number of per-
sons who usually worked from
home in the reference period
of four weeks preceding the
end of the reference week over
the total number of working
persons. For NUTS 2 regions
which are the location of the
workplace with the location of
residence in the same country

the ratio EU Labour Force
Survey

emissions intensity
log(ei)

Avg CO2 emissions for new
passenger cars

log of CO2/km Eurostat

diesel price
diesel

Avg annual price of diesel
adjusted for inflation

Euros per 1000 liters Eurostat weekly oil
bulletin

petrol price
petrol

Avg annual price of petrol
adjusted for inflation

Euros per 1000 liters Eurostat weekly oil
bulletin

freight
log(frt)

Total good loaded in the
NUTS 2 region

log of million tonne per
km

Eurostat regional
statistic
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Appendix B

Table B.1: TWFE regression for specification projected with all covariates

Coefficient Std.Error

asinh(cases) −0.0234*** (0.00515)

asinh(nvrwfh) 0.120** (0.0492)

rwfh −0.0103 (0.0807)

log(gdp) 0.560*** (0.0862)

log(ei) 0.294*** (0.0494)

diesel −0.000818*** (0.0000997)

petrol 0.000439*** (0.000132)

log(frt) 0.00917 (0.0138)

Region-FE Y

Year-FE Y

Obs 768

N 128

T 6

Notes: Dependent variable is log of CO2 per captia, log(co2), standard errors are clustered at the regional level.

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10
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Appendix C

Figure C.1: Unit weights - all covariates
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Table C.1: Summary values of selected variables in 2019 of NUTS 2 regions that
received positive weights

NUTS2 Name Weights CO2pc GDPpc EI Commute WFH Diesel Petrol

LU00 Luxembourg - 8.29 78700 133 348.66 0.117 1038.7 1143.2

ITG1 Sicilia 0.0440 1.32 18400 119.4 1284.26 0.023 1432.4 1523.7

ITF6 Calabria 0.0430 1.57 17700 119.4 512.71 0.027 1432.4 1523.7

ITC3 Liguria 0.0341 1.16 32900 119.4 582.16 0.047 1432.4 1523.7

HU31 Észak-Magyarország 0.0334 1.66 15100 129.7 426.95 0.009 1119.8 1070.3

ITF1 Abruzzo 0.0331 2.49 25700 119.4 466.53 0.039 1432.4 1523.7

HU22 Nyugat-Dunántúl 0.0318 1.92 22200 129.7 438.74 0.009 1119.8 1070.3

BE35 P. Namur 0.0317 3.87 24500 121.5 125.37 0.074 1333.4 1290.8

BE22 P. Limburg (BE) 0.0311 2.47 29700 121.5 248.93 0.057 1333.4 1290.8

BE10 Bruxelles-Capitale 0.0308 0.43 63400 121.5 483.19 0.066 1333.4 1290.8

ITI4 Lazio 0.0305 1.06 35200 119.4 2285.14 0.043 1432.4 1523.7

ITF3 Campania 0.0290 0.80 19500 119.4 1519.75 0.026 1432.4 1523.7

BE32 P. Hainaut 0.0270 2.39 22800 121.5 322.54 0.078 1333.4 1290.8

ITC1 Piemonte 0.0266 1.96 32000 119.4 1707.21 0.041 1432.4 1523.7

ITF4 Puglia 0.0261 1.05 19600 119.4 1167.70 0.021 1432.4 1523.7

BE25 P. West-Vlaanderen 0.0254 2.02 35700 121.5 375.18 0.091 1333.4 1290.8

Continued on next page
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Table C.1 continued from previous page

NUTS2 Name Weights CO2pc GDPpc EI Commute WFH Diesel Petrol

HU32 Észak-Alföld 0.0249 1.41 14700 129.7 593.31 0.007 1119.8 1070.3

ITG2 Sardegna 0.0238 2.56 22000 119.4 561.49 0.028 1432.4 1523.7

BE23 P. Oost-Vlaanderen 0.0236 1.89 33500 121.5 478.84 0.069 1333.4 1290.8

PL62 Warmińsko-mazurskie 0.0235 2.16 15600 130.4 477.19 0.060 1120.1 1109.5

NL11 Groningen 0.0225 1.43 36000 98.4 185.30 0.132 1282.5 1558.1

HU23 Dél-Dunántúl 0.0216 2.27 15500 129.7 338.67 0.011 1119.8 1070.3

ITI3 Marche 0.0209 1.75 28400 119.4 597.78 0.030 1432.4 1523.7

ITI2 Umbria 0.0199 1.92 26600 119.4 336.74 0.036 1432.4 1523.7

BE21 P. Antwerpen 0.0198 1.48 43400 121.5 573.01 0.068 1333.4 1290.8

ITF5 Basilicata 0.0193 2.99 23300 119.4 188.59 0.022 1432.4 1523.7

PL51 Dolnoslaskie 0.0192 1.56 24900 130.4 1015.52 0.050 1120.1 1109.5

HU21 Közép-Dunántúl 0.0187 1.92 21100 129.7 453.53 0.007 1119.8 1070.3

HU33 Dél-Alföld 0.0182 1.60 16500 129.7 534.09 0.006 1119.8 1070.3

ITH5 Emilia-Romagna 0.0180 1.91 36600 119.4 1950.99 0.041 1432.4 1523.7

ITH3 Veneto 0.0177 1.75 34200 119.4 2043.72 0.041 1432.4 1523.7

PL22 Slaskie 0.0175 1.08 23400 130.4 1622.91 0.049 1120.1 1109.5

DK05 Nordjylland 0.0172 2.36 32900 111.9 199.54 0.077 1360.8 1568.6

PL43 Lubuskie 0.0162 2.41 18500 130.4 372.14 0.022 1120.1 1109.5

BE24 P. Vlaams-Brabant 0.0158 2.07 39900 121.5 323.36 0.059 1333.4 1290.8

DE40 Brandenburg 0.0152 3.52 27400 131.2 373.29 0.046 1189.2 1342.5

ITI1 Toscana 0.0147 1.68 33100 119.4 1521.73 0.042 1432.4 1523.7

ES12 Principado de Asturias 0.0134 2.08 25000 121.3 337.11 0.066 1164.5 1244.3

ITH4 Friuli-Venezia Giulia 0.0127 2.47 32700 119.4 481.83 0.048 1432.5 1523.7

PL42 Zachodniopomorskie 0.0114 1.73 19000 130.4 600.91 0.045 1120.1 1109.5

PL61 Kujawsko-pomorskie 0.0100 1.76 18200 130.4 713.43 0.039 1120.1 1109.5

NL42 Limburg (NL) 0.0099 1.88 35000 98.4 384.31 0.120 1282.5 1558.1

PL41 Wielkopolskie 0.0084 1.61 24800 130.4 1347.88 0.055 1120.1 1109.5

DK03 Syddanmark 0.0079 2.12 35300 111.9 412.18 0.079 1360.8 1568.6

NL33 Zuid-Holland 0.0065 1.15 38400 98.4 1111.51 0.131 1282.5 1558.1

NL13 Drenthe 0.0064 3.09 27000 98.4 163.22 0.132 1282.5 1558.1

FI1D Pohjois- ja Itä-Suomi 0.0051 3.31 28300 115.3 411.31 0.107 1359.3 1471.4

NL41 Noord-Brabant 0.0046 1.83 40200 98.4 869.95 0.138 1282.5 1558.1

NL23 Flevoland 0.0037 2.42 29300 98.4 113.30 0.112 1282.5 1558.1

NL22 Gelderland 0.0035 2.00 33500 98.4 656.29 0.162 1282.5 1558.1

PL21 Ma lopolskie 0.0024 1.24 20800 130.4 1165.44 0.046 1120.1 1109.5

ES43 Extremadura 0.0019 3.32 20700 121.3 353.45 0.050 1164.5 1244.3

ITH2 P. Trento 0.0019 2.65 39600 119.4 225.23 0.036 1432.4 1523.7

ES62 Región de Murcia 0.0018 1.79 23300 121.3 549.36 0.041 1164.5 1244.3

FI1C Etelä-Suomi 0.0015 1.59 30300 115.3 360.17 0.140 1359.3 1471.4

ES41 Castilla y León 0.0008 4.73 26800 121.3 888.020 0.048 1164.5 1244.3

DK02 Sjælland 0.0003 2.27 27500 111.9 228.76 0.076 1360.8 1568.6

ES23 La Rioja 0.0001 2.99 30200 121.3 124.94 0.035 1164.5 1244.3

Note: Weights refer to unit weights assigned by the SDID method. CO2 pc is CO2 emissions measured in tonnes per

capita. GDP pc is GDP per capita in Purchasing Power Standards. EI is the average CO2 emissions per km from new

passenger cars. Commute refers to all persons commuting to the NUT2 region. WFH is the proportion of people working

from home. Diesel is the annual average real price of diesel. Petrol is the annual average real price of petrol. All values

(except weights) are for 2019.
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Figure C.2: Pre-treatment trends of the adjusted log CO2 per capita emissions

(a) Absolute level
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(b) Normalized outcome
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Notes: Luxembourg is the pre-treatment time series trend for Luxembourg treated unit. Simple avg all
units is the pre-treatment average trend of all units in the donor pool. Simple avg positively weighted
units is the pre- treatment average trend of the units in the donor pool that received positive weights.
Weighted average is the pre-treatment weighted average of the units that received a positive weights.
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Appendix D

Figure D.1: ATTs across different model specifications
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Notes: Spec 1 excludes controls for freight transport; Spec 2 excludes controls for working from home;

Spec 3 excludes controls for both freight and working from home, Spec 4 excludes controls for commuting

data; Spec 5 excludes controls for commuting but includes specific controls for cross-border commuting

and commuting within a region.
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Table D.1: Sensitivity analysis across different model specifications

(Spec 1) (Spec 2) (Spec 3) (Spec 4) (Spec 5)

asinh(cases) -0.0231∗∗∗ -0.0234∗∗∗ -0.0231∗∗∗ -0.0257∗∗∗ -0.0234∗∗∗

(0.00520) (0.00517) (0.00521) (0.00554) (0.00516)

log(gdp) 0.561∗∗∗ 0.560∗∗∗ 0.561∗∗∗ 0.549∗∗∗ 0.560∗∗∗

(0.0860) (0.0870) (0.0868) (0.0895) (0.0862)

asinh(nvrwfh) 0.121∗ 0.123∗∗ 0.123∗∗

(0.0493) (0.0365) (0.0367)

rwfh -0.0101 -0.160∗∗ -0.00935

(0.0808) (0.0503) (0.0813)

log(ei) 0.295∗∗∗ 0.295∗∗∗ 0.296∗∗∗ 0.291∗∗∗ 0.295∗∗∗

(0.0492) (0.0493) (0.0491) (0.0505) (0.0497)

diesel -0.000825∗∗∗ -0.000821∗∗∗ -0.000827∗∗∗ -0.000824∗∗∗ -0.000813∗∗∗

(0.0000954) (0.0000993) (0.0000953) (0.0000984) (0.0000979)

petrol 0.000446∗∗∗ 0.000440∗∗ 0.000446∗∗∗ 0.000442∗∗∗ 0.000434∗∗

(0.000128) (0.000132) (0.000129) (0.000130) (0.000131)

log(frt) 0.00916 0.0115 0.00885

(0.0137) (0.0135) (0.0138)

asinh(nvrcountry) 0.120∗

(0.0491)

asinh(crossborder) -0.000919

(0.00230)

Observations 768 768 768 768 768

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix E

Figure E.1: ATTs using DID approach
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Appendix F

Figure F.1: Luxembourg traffic volume data

(a) Volume of bi-directional car traffic, by canton

(b) Change in volume of bi-directional traffic, by canton
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Figure F.2: Luxembourg traffic volume at the borders

(a) Luxembourg traffic volume by frontier post

(b) Luxembourg Frontiere post location
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